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Abstract

Direct numerical simulations have been used to examine the effect of the initial distur-

bance field on the development of three-dimensionality and the transition to turbu-

lence in the incompressible plane wake. The simulations were performed using a new

numerical method for solving the time-dependent, three-dimensional, incompressible

Navier-Stokes equations in flows with one infinite and two periodic directions. The

method uses standard Fast Fourier Transforms and is applicable to cases where the

vorticity field is compact in the infinite direction. Initial disturbances fields exam-

ined were combinations of two-dimensional waves and symmetric pairs of 60 ° oblique

waves at the fundamental, subharmonic, and sub-subharmonic wavelengths.

The results of these simulations indicate that the presence of 60 ° disturbances

at the subharmonic streamwise wavelength results in the development of strong co-

herent three-dimensional structures. The resulting strong three-dimensional rate-

of-strain triggers the growth of intense fine scale motions. Wakes initiated with

60 ° disturbances at the fundamental streamwise wavelength develop weak coherent

streamwise structures, and do not develop significant fine scale motions, even at high

Reynolds numbers. The wakes which develop strong three-dimensional structures ex-

hibit growth rates on par with experimentally observed turbulent plane wakes. Wakes

which develop only weak three-dimensional structures exhibit significantly lower late

time growth rates.

Preliminary studies of wakes initiated with an oblique fundamental and a two-

dimensional subharmonic, which develop asymmetric coherent oblique structures at

the subharmonic wavelength, indicate that significant fine scale motions only develop

if the resulting oblique structures are above an angle of approximately 45 °.
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Chapter 1

Introduction

1.1 Background

This section presents a review of results from previous theoretical, experimental, and

computational studies of incompressible plane wakes. A brief review of numerical

simulations of free shear flows is also presented.

1.1.1 The Incompressible Wake

Significant progress has been made in understanding the primary stages of transition

in incompressible wakes behind slender bodies. There exists substantial theoretical,

experimental, and computational work describing the initial development of the initial

wake instability: the growth of two-dimensional Kelvin-Helmholz waves into the well

known Kdrm_n vortex street.

Sato & Kuriki [39] performed a now classic set of experiments on both natural and

forced wakes behind a thin flat plate. They identified three distinct developmental

regions in the wake: the linear region (also known as the Kelvin-Helmholz instability

region), where small amplitude disturbances grow exponentially; the nonlinear growth

region, where the fundamental two-dimensional mode saturates and the wake rolls up

into the K£rm£n vortex street; and the three-dimensional region, where strong three-

dimensional motions appear. They found that growth rates and mode shapes of the
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disturbances in the linear region were well predicted by linear stability analysis of

a Oaussian mean base flow. Past the short linear region, however, the?" observed

that the evolution of the wake deviates substantially from the predictions of linear

theory. The amplitude of the two-dimensional fundamental disturbance saturated,

and then decreased, higher harmonics of the two-dimensional fundamental appeared

in the wake, and the mean velocity and wake width changed at a rate which was far

more rapid than could be accounted for by linear theory.

Ko, Nubota, _; Lees [22] performed a two-dimensional finite amplitude, single

frequency disturbance analysis of the plane wake to explain the results reported by

Sato & Kuriki for the nonlinear region. By applying an integral method to a bound-

arv layer approximation of the Navier-Stokes equations, they were able to study the

energy balance between the mean flow and the finite amplitude disturbances. The?"

related the observed behavior of the wake disturbance amplitude and the rapid varia-

tions in the mean flow to energy transfer between the disturbance and the mean flow

via the Reynolds stresses. Their analysis also emphasized the importance of binary

interactions between disturbance modes, which are the source of higher harmonics in

the wake.

These studies, plus others such as those by Sato _; Saito [40], who extended the

work of Sato & Kuriki [39] by examining the effect of multiple frequency forcing, and

Mattingly & Criminale [26], who developed a disturbance theory which included the

effects of the non-parallel nature of the near-field wake, give a fairly comprehensive

picture of the earl?" stages of wake instability. Understanding of two-dimensional near

wakes behind bluff bodies much more difficult since the initial instability is dominated

by a complex mixture of large amplitude motions including flow separation dynamics,

rollup of the shed shear layers, and reversed flow in the near wake (c.f. the studies of

Karniadakis & Triantafyllou [20, 21]). It is reasonable to assume, however, that far

downstream, away from the vicinity of the body, the dynamics of the fully developed

blunt body wake should be similar to those for the wakes of slender bodies. Only the

initial conditions should differ.

In contrast to the fairly complete understanding of the initial stability characteris-

tics and early development of the plane wake, there still remain significant unresolved
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issues related to the stability characteristics of the two-dimensional non-linear wake.

It is these secondary stages of instability that lead to the appearance of strong three-

dimensional motions in the wake.

Early experiments on the three-dimensional structure of the far wake were per-

formed by Townsend [45]. These experiments were later extended by Grant [17], who

took long-time-averaged velocity correlations in the far wake of a cylinder. Coherent

three-dimensional structures, later referred to as "double-roller eddies" by Townsend

[46], were inferred from these measurements. These structures were described as pairs

of curved, counter-rotating vortices oriented perpendicular to the plane of the wake.

Roshko [37] suggested that the time-averaged data was actually due to a superposi-

tion of vortex loops, formed by the distortion of spanwise vortices from opposite sides

of the wake. Mumford /29] later used a pattern recognition technique to study the

double-roller eddies, and concluded that they were often confined to one side of the

wake or the other, and that they tended to appear in groups.

A set of experiments by Cimbala, Nagib, & Roshko [13] were among the first

in which the existence of spanwise periodic streamwise structures in the planar far

wake of a bluff body was documented. They identified the structures as hairpin

vortices produced by a parametric resonance between the two-dimensional and oblique

subharmonic disturbances. They regarded this secondary instability as similar to one

studied by Pierrehumbert & Widnall [32] in plane mixing layers.

Flemming [16] performed an analysis of the secondary instability of the plane

wake. Taking as a base flow a Gaussian mean velocity field with a two-dimension-

al fundamental Orr-Sommerfeld mode superimposed, Flemming obtained a Hill-type

system of equations for the stability of the far wake. Numerical studies of the stability

equations indicated that, for sufficiently high fundamental (Orr-Sommerfeld) mode

amplitudes, pairs of oblique waves at the subharmonic streamwise wavelength were

unstable. The angle of the most unstable disturbance was found to depend on the

wake Reynolds number, but unstable disturbances were found to exist at angles of

between 45 ° and 70 ° with respect to the spanwise direction.

Corke, Krull, & Ghassemi [14], using the results of Flemming, performed a study

of the mechanisms for the secondary growth of three dimensional modes in the far
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wake of an airfoil. They focused on a parametric resonance mechanism between the

fundamental two dimensional K_rm_n instability mode and pairs of phase locked

oblique disturbances at the subharmonic wavelength that were oriented 60 ° and 73 °

with respect to the spanwise direction. These resonances were expected from the form

of the stability equations developed by Flemming. They found that, at least under

certain conditions, a resonance develops where the two dimensional fundamental mode

and the subharmonic oblique modes exchange energy over several long period cycles.

Williamson [52] and Williamson & Prasad [53, 54, 55] suggest an alternate mech-

anism for the development of strong three-dimensional motions. Recent experiments

they performed indicate that the oblique waves observed in the far wake of a cylinder

by Cimbala et al. are due to an interaction between oblique shedding waves produced

by the wake generator and two-dimensional subharmonic waves which arise from the

inherent hydrodynamic instability of the mean flow in the far wake.

These differing theories on the source of three-dimensional motions -- one which

ascribes the three-dimensional motions in the far wake to the growth of pairs of highly

oblique subharmonic waves which exist from early in the flow, and one which ascribes

the three-dimensional motions in the far wake as being composed of oblique waves

generated from an interaction between asymmetric fundamental vortex shedding and

long wavelength two-dimensional motions -- reinforce the need to examine the effect

of initial conditions on the development of the wake. Both theories suggest the

importance of studying tile dynamics of highly oblique disturbances in plane wakes.

Wygnanski, Champagne, & Marasli [58] conducted an experimental study of small

deficit turbulent wakes created using a variety of wake generators. The generators

were carefully chosen to have the same drag, and therefore to create wakes with

the same momentum thickness and momentum thickness Reynolds number. They

found that the normalized characteristic velocity and length scales as well as the

normalized longitudinal turbulence intensity depended on the generator used, and

hence depended on the initial conditions created by that generator. The shape of

the mean velocity profile, however, was found to be independent of initial conditions.

They attributed the lack of universality in part to the interaction between the sinuous

(cross-stream component of velocity antisymmetric about the wake centerline) and
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varicose (cross-stream component of velocity symmetric about the wake centerline)

instability modes in the far wake. A common interpretation of classical similarity

theory, which characterizes the turbulent wake through a single parameter -- the

momentum deficit (see appendix A) -- holds that the turbulent wake should have

a universal growth rate, independent of initial conditions. In fact, classical theory

addresses only the late time growth laws for the turbulent wake, not the actual rates.

The implication of the results of Wygnanski et al. is that the rate of development of

the turbulent far field of the plane wake is indeed dependent on parameters related

to the initial conditions, and therefore not universal.

In addition to the primarily experimental and theoretical studies discussed above,

there have been a large number of computational studies of free shear flows.

Mixing layer simulations by Riley, Mourad, Moser _z Rogers [33] indicates that

the large scale structures that develop in an incompressible mixing layer are strongly

dependent on the phase angle between a two-dimensional fundamental disturbance

and a pair of oblique disturbances. They found that the existence of strong vorticity in

the region between spanwise rollers at late times required the presence of streamwise

vorticity in the same region from early on in the development of the layer. They

determined that the intense streamwise vorticity was produced by stretching of the

early vorticity by the strain field induced by the large structures.

Moser _ Rogers [27] and Rogers _ Moser [35, 36] conducted a comprehensive

numerical study of a temporally evolving incompressible plane mixing layer started

from "clean" initial conditions (the initial conditions consisted of a mean flow plus

a small number of low wavenumber disturbances). They found that most of the sets

of initial conditions they studied led to the development of very intense streamwise

vortical structures. Those mixing layers that did not develop these strong streamwise

structures during the initial period of growth took much longer to develop any signif-

icant three-dimensionality. Because of this they concluded that the development of

the strong streamwise structures were a key step in the development of three-dimen-

sionality and the eventual transition to turbulence.
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Chen, Cantwell, & Mansour [9, 10] carried out a direct numerical simulation of

a temporally evolving compressible plane wake. They found that linear theory ac-

curately predicted the early growth of the plane wake for freestream Mach numbers

between M = 0.01 and M = 3.0. They also found that the development of three-dim-

ensionality in the compressible wake was significantly affected by the relative phase

of the initial disturbance.

Maekawa, Mansour, & Buell [24] performed direct numerical simulations of a set

of two-dimensional spatially evolving incompressible plane wakes. They found that

wakes initiated with a two-dimensional fundamental and a two-dimensional subhar-

monic disturbance initially form a K£rm_in vortex street at the fundamental wave-

length. Once the fundamental has saturated, the subharmonic disturbance begins

to become significant and the vortices in the vortex street combine, forming pairs

of both like and opposite signed vortices. A wake forced with a combination of a

fundamental and random noise showed similar behavior.

Moser & Rogers [28] performed a direct numerical simulation of a pair of tempo-

rally evolving incompressible plane wakes started from pairs of temporally evolving

turbulent boundary layers which had been previously computed by Spalart [43]. The

first wake was initiated with only the computed boundary layers. The second was

initiated with modified boundary layers which had all the two-dimensional modes in-

creased by a factor of 20 in an attempt to simulate the receptivity of the plane wake

to two-dimensional disturbances which normally would occur at the wake generator.

The high amplification of the two-dimensional modes, which amounted to a 13 fold in-

crease in total disturbance energy, was found to be necessary to spur the development

of the large scale two-dimensional structures that were expected to appear.

The first turbulent wake case computed by Moser & Rogers showed eventual self-

similar (t '/_) growth and energy spectra with a short region of k -s/3 slope. However,

the late time growth rate was found to be well below the range of rates measured

by Wygnanski et al. [58]. The second wake, with the enhanced two-dimensional

disturbance field, also showed a region of k -5/a spectra, but never developed the

expected self-similar t 1/2 growth pattern for any extended period of time. The forced

wake also had a growth rate well above the Wygnanski range.
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1.1.2 Topology of Fine Scale Motions

One of the major unsolved problems of fluid mechanics is how to model turbulent

flows. Model development has been hindered by the fact that different types of flows

require different models since the large scale features of the turbulence are highly flow

dependent. An attempt to get around this problem is the technique of large eddy

simulation, which splits the flow into the mean flow and large scale turbulence, which

is simulated numerically, and the fine scale turbulence, which is modeled. The basic

premise of the technique is that the fine scale turbulence has features which are flow

independent and therefore more amenable to modeling than the larger scales.

The typical approach to developing a model for the fine scale turbulence is to

assume statistical isotropy of the turbulent motions at high wavenumbers -- there-

fore relying on the assumption that the spectral characteristics of the turbulence are

universal. A number of recent studies of the topology of the fine scale velocity fields

of a variety of turbulent flows have revealed another potential path to developing a

turbulence model for use in large eddy simulations. They have found what appear to

be universal features in the geometric properties of fine scale turbulence in physical

space. The existence of such universal features could potential]), lead to models for

fine scale turbulence based on the physical (local) rather than the spectral (global)

properties of the turbulence.

Ashurst, Kerstein, Kerr & Gibson [2] studied direct numerical simulations of in-

compressible forced isotropic turbulence and homogeneous sheared turbulence. The),

found that the intermediate principal strain-rate tended to be positive throughout

the flow. Furthermore, data conditioned on high levels of local dissipation of kinetic

energy had a uniformly positive intermediate strain-rate, with strain rates in the ra-

tio of approximately 3 • 1 • -4. They also 'found that the highly dissipating motions

tended to have the vorticity vector aligned with the intermediate principal strain-rate

direction.

More recent studies of incompressible forced isotropic turbulence by Vincent &

Meneguzzi [50, 51] and Ruetsch & Maxey [38] indicate that the small scale structures

take the form of vortex tubes. The highest rates-of-strain, and therefore highest rates

of dissipation, were found to occur in the vicinity of, but outside the cores of. these
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vortex tubes. Vincent & Meneguzzi again found that the vorticity in these high dis-

sipation regions was aligned with the intermediate principal strain-rate. Furthermore

they found that this result held before the vortex tubes had developed.

Chen et al. [11] studied a set of direct numerical simulations of transitional com-

pressible and incompressible mixing layers. They used a new data display method

based on the classification of local flow topologies using the techniques outlined by

Chong, Perry & Cantwell [12] (see appendix D). The method allows for simple and

straightforward study of global trends in the topology of the fine scales and correla-

tions between physical and topological features. As in the other studies, they found

that the intermediate principal rate-of-strain tended to be positive, and that the trend

became stronger as the data was conditioned on higher rate of dissipation. They also

found that regions of high dissipation tended to be associated with similarly high

enstrophy density. Sondergaard e_ al. [41], Soria, Sondergaard & Cantwell [42] and

Blackburn, Mansour & Cantwell [3] extended the study of Chen et al. to include

data from simulations of compressible and incompressible wakes, a turbulent incom-

pressible mixing layer, and incompressible channel flow respectively. Again the same

general topological features were observed.

Finally, Tsinober, Kit & Dracos [47] performed an experimental study of the align-

ment of strain and vorticity in both grid-generated and boundary layer turbulence.

They observed a tendency for the vorticity vector to align with the intermediate prin-

cipal rate-of-strain in agreement with the previous studies of numerical simulations.

Attempts have been made to explain these observations. Jim_nez [19] suggested

a kinematic model for the alignment of the vorticity and strain using the stretched

Burgers' vortex as an example. Though the model described a vortical flow in which

the observed alignment occurred, there Was no attempt to explain the evolution of

such structures in a real flow. Cantwell [5] studied a restricted Euler equation, first

studied by Vieillefosse [48, 49], in which viscous terms and mixed second derivatives of

the pressure had been dropped. The resulting closed-form solution for the evolution

of the velocity gradients reproduced the tendency for the strain-rates to evolve to a

state with a positive intermediate principal rate-of-strain. Cantwell [6] later developed

an intermediate asymptotic model for the case where the viscous terms and mixed



CHAPTER I. INTRODUCTION 9

derivatives of the pressure were non-zero. This model helped to explain the structure

of the invariant pdfs in the mixing layer data examined by Soria et al.

1.1.3 Goals of This Study

In light of the studies discussed above, the following questions arise:

• Is the parametric resonance model proposed by Flemming and Corke et al. for

the development of three-dimensionality in the far wake an appropriate one? If

so:

• How do the initial conditions affect the development of three-dimensionality in

the incompressible plane wake?

• How do the initial conditions affect the mean flow and structure of the turbu-

lence in the far wake?

• How do the initial conditions affect the growth rate and mean properties of the

turbulence in the far wake?

The intent of this study is to begin to address these questions.

1.1.4 Direct Numerical Simulation of Free Shear Flows

The basic tool used in this study is direct numerical simulation. Here the term "di-

rect" indicates that there is no attempt to model unresolved scales in the simulation.

All of the scales in the flow which contain significant amounts of energy are numeri-

cally resolved and evolve as solutions to the full Navier-Stokes equations.

The major shortcoming of numerical simulation is the limitation on resolution. A

numerical simulation is restricted by the size and speed of the computational hardware

used. For a given simulation on a given machine, there is a fixed range of scales which

can be reasonably computed. For the time being at least, this means that flows studied

by numerical methods in general, and direct numerical methods in particular, are

either limited to relatively small flow domains or to Reynolds numbers that are quite

low compared to those obtainable in laboratory experiments.
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The size of the flow domain which can be represented numerically is also limited

by the computational resources available. This limitation can have an impact on the

development of the computed flow. While this constraint also appears in laboratory

experiments (where walls, boundary layers, and limited facility length can affect the

flow), it is typically less severe in experiments. Because of these facts, care must be

taken when attempting to generalize the results of numerical studies.

To maximize the range of computed flow scales, a temporal formulation has been

used in the simulations performed for this study. A temporal simulation may be

thought of as approximating the evolution of a representative set of structures in

the physically realizable spatially evolving flow as they convect downstream. In the

case of the wake, a temporal formulation approximates the view an observer that was

convecting downstream with the freestream (or alternately a fixed observer that has

been passed by the wake generator) would have of the evolution of the flow structures.

In a temporal fornmlation, the roles of time and the downstream coordinate direction

are swapped with respect to the corresponding spatial formulation. Time in the

temporal formulations becomes the measure of the level of development of the flow,

in place of downstream distance for the spatial formulation. Variations in the flow

at different streamwise coordinates at a fixed time in the temporal formulation are

analogous to variations with time at a fixed point in the spatial formulation.

Using a temporal rather than a spatial formulation has the advantage of allowing

the resolution of smaller scales for a given set of computational resources. A spatial

formulation requires the resolution of both a large flow domain and the fine scale

motions. This represents a potentially very wide range of scales, with correspondingly

large computational requirements. Using a temporal formulation allows the range of

resolved scales to be reduced by restricting the largest resolved scales in the flow to

at most a few representative large structures instead of the full domain. By reducing

the computational requirements associated with the large scales, more of the available

resources may be focused on resolving the small scales.

One assumption inherent in any temporal formulation is that the streamwise rate

of change of a spatially evolving flow is small at the scale of the structures being

studied. When this assumption holds, the mean flow may be approximated as being
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locally parallel without significantly affecting the development of the structures of

interest. This assumption is generally a very poor one very near the origin in any

spatially developing free shear flow. It can, however, be quite reasonable away from

that region if the growth of the far field flow is sufficiently slow. For wakes, in

which the far downstream flow grows as x½ (where x is the downstream distance)

the assumption of parallel mean flow is quite good. For mixing layers, in which the

far downstream flow grows like x, the assumption of parallel mean flow is less valid.

Under the proper conditions, however, the change in width of the mixing layer over

the length of the structures being studied call be relatively small, making the temporal

approximation useful.

Temporal formulations also inherently ignore the details of how disturbances are

initially created in the flow. Since here we are interested in how specific disturbance

modes (disturbances with specific wavelengths, angles, and phases) affect the devel-

opment of the far wake, the exact details of how those specific modes are generated in

a spatially evolving wake are not addressed. All of the geometric details of the wake

generator are subsumed in the choice of disturbance modes and disturbance phases.

Finally, temporal formulations (and to a lesser extent spatial formulations), by

limiting the computational domain to a few large structures in the flow, can confine

the development of the flow in the streamwise and cross-stream directions, possibly

quite severely. This artificial confinement can inhibit or prohibit the development

large scale motions which might normally exist, and become dynamically significant,

in a physical flow. The effects of the finite computational domain must be taken into

account when interpreting the computational results, particularly in the late stages

of development of the flow..

Numerical simulations in general have some special advantages in answering the

type of questions asked at the end of section 1.1.1 above. The initial conditions can be

very precisely controlled and the results present a complete description of the entire

flow field, including physical variables that would normally be very hard to measure.

This allows for unambiguous connections to be made between initial conditions and

developed structures. In addition, direct numerical simulations give access to all the
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physical quantities in the flow at a given instant. This allows study of quantities

which are not normally available from a laboratory experiment.

The numerical technique used here to perform the simulations is known as a

"pseudo-spectral" method. In a "spectral" method, the dependent variables are ex-

panded as a sum of (usually orthogonal) basis functions. This allows the governing

partial differential equations for the physical variables in the problem to be converted

into a set of ordinary differential equations for the time evolution of the coefficients

of the basis functions in the approximating sums. The primary benefit of such an

approach is that, by expressing spatial derivatives of the basis functions in terms

of the basis functions, calculation of spatial derivatives is greatly simplified. It also

allows derivatives to be calculated with "spectral" accuracy. This means that the

error in the representation of derivatives goes to zero exponentially as the number of

functions in the basis set goes to infinity. Other approaches, such as finite difference

schemes, typically have errors that go to zero algebraically.

Another benefit of spectral methods is that they lead to algorithms that are simple

to implement on parallel processing computers (machines that are designed to use

multiple interconnected microprocessors to work different parts of the same problem

simultaneously). Larger and more complex simulations can be carried out on these

parallel machines.

In what is known as a "fully" spectral method, any nonlinear terms in the gov-

erning equations are computed using convolution integrals involving the coefficients

of the expansions. This is a computationally intensive process. A "pseudo"-spectra}

method makes use of fast transforms to convert between the physical representation of

the dependent variables and the basis function expansions. This allows any nonlinear

terms to be calculated in physical space using simple multiplication then re-expanded

in terms of the basis functions. For large problems, the use of fast Fourier trans-

forms makes pseudo-spectral methods significantly more efficient than fully spectral

methods.



CHAPTER 1, INTRODUCTION 13

1.2 Outline of Present Work

The intent of the present work is to examine the effect of the choice of initial conditions

on the development of the incompressible plane wake. Of particular interest is how

the initial conditions relate to the development of three-dimensionality and eventual

transition to turbulence in the wake. Also of interest is whether the structure of the

turbulence which develops is independent of initial conditions as predicted by the

usual one parameter similarity analysis of the far wake.

All of the flows that will be described here were started from a laminar base

flow upon which was superimposed a small number of disturbance modes at very

specific wavelengths. The disturbance modes were the most unstable eigenfunctions

as predicted by linear stability theory. Understanding these very simple, "clean",

wake flows should allow for a better understanding of wakes started with more realistic

initial conditions, which will contain uncontrolled disturbances.

Chapter 2 describes the numerical methodology used to perform the direct numer-

ical simulations used in this study. A new pseudo-spectral algorithm for simulating

planar shear flows with periodic freestream boundary conditions is described and

tested. The method uses Fourier transforms in all three spatial directions to solve for

the flow in a finite, time-varying, computational domain using velocities which are

matched at the domain boundaries to known analytic solutions.

Chapter 3 presents results from a series of two-dimensional direct numerical simu-

lations. The effect of the choice and phasing of two-dimensional disturbance modes is

described. The effect of flow Reynolds number on the development is also examined.

Chapter 4 presents results from a wide series of three-dimensional direct numer-

ical simulations of the plane incompressible wake. The effects of disturbance mode,

relative disturbance phasing, and flow Reynolds number on the wake development

are discussed.

Chapter 5 examines the evolution of the topology of the small scale motions for a

selected subset of the three-dimensional simulations discussed in chapter 4.

Chapter 6 presents the major conclusions of this work and outlines some recom-

mendations for future work.
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Appendix A presents a brief outline of classical similarity theory as applied to

incompressible plane wakes, as well a definitions of some of the turbulence measures

used.

Appendix B presents a review of basic linear stability theory and the method used

to generate the disturbance eigenfunctions for the computed flows.

Appendix C presents an overview of numerical aliasing and a description of the

dealiasing algorithm used.

Appendix D describes in greater detail the topological methods used in chapter 5

to study the structure of the fine scale motions in the computed flows.

Appendix E presents a full set of invariant space pdfs for selected wake simulations.

Appendix F presents mean turbulence statistics for selected wake simulations.

Appendix G presents preliminary results from a set of wake simulations initiated

with combinations of oblique fundamentals at various angles and two-dimensional

subharmonic disturbances. This approximates the initial conditions in the experi-

ments of Williamson and Williamson & Prasad.

Appendix H gives a listing of all the computations performed for this study along

with the values of the relevant flow parameters for each simulation.

1.3 Summary of Results

1.3.1 The Two-dimensional Plane Wake

Two-dimensional simulations of the temporally evolving plane wake initiated with

combinations of disturbance eigenfunctions at the fundamental, subharmonic, and

sub-subharmonic wavelength indicate the following:

• The presence of a subharmonic disturbance causes the initial Kdrmdn rollers

to amalgamate and/or pair_ depending on the phase relative to the fundamen-

tal. The presence of a sub-subharmonic disturbance has minimal effect on the

structure or growth of the wake.

• Increasing the Reynolds number increases the intensity of the large scale struc-

tures in the flow at a given development time without having a major effect
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on their overall shape. Increasing Reynolds number significantly increases the

number, intensity, and duration of small scale features.

The passive scalar and enstrophy density fields track each other well. Major

differences between the enstrophy density and scalar fields only appear in regions

of the flow where there has been significant cancellation of vorticity of opposite

sign.

1.3.2 The Three-dimensional Plane Wake

Physical Space

Temporal simulations of the three-dimensional plane wake at various Reynolds num-

bers, initiated with combinations of two-dimensional and three-dimensional distur-

bance eigenfunctions at the fundamental, subharmonic, and sub-subharmonic wave-

length at various phases indicate the following:

• The mechanism proposed by Flemming and Corke et al. is a legitimate route

for the development of three-dimensional motions in the far wake.

Wakes with two-dimensional and oblique disturbances at only the fundamental

wavelength do not produce any significant three-dimensionality in the far wake.

The addition of a two-dimensional subharmonic disturbance produces coherent

three-dimensional structures of only moderate strength.

The presence of an oblique disturbance at the subharmonic wavelength results

in the development of very strong three-dimensional structures, independent of

the presence or absence of disturbances other than the two-dimensional funda-

mental.

The primary effect of the phase of the oblique disturbances is to determine

which side of the wake develops the dominant three-dimensional structures. The

phase of the two-dimensional subharmonic disturbances has a significant effect

on the development of streamwise structures in the wake only in the absence
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of subharmonic oblique disturbances (when the wake dynamics are primarily

two-dimensional).

As the wake Reynolds number is increased, the strength of the three-dimen-

sional structures increases. At the highest Reynolds numbers simulated, where

there is a significant volume of intense vorticity spread through the wake, the

highest enstrophy density regions appear as coherent three-dimensional struc-

tures. These structures take the form of elongated vortex tubes with lengths on

the order of the wake width and diameters on the order of the turbulent scales.

Preliminary studies indicate that the mechanism proposed by Williamson &

Prasad for the development of three-dimensional motions in the far wake is

also legitimate so long as the shedding angle of the oblique fundamental is

sufficiently high. Weakly oblique shedding does not appear to result in the

strong streamwise structures that are necessary for the development of fine

scales.

Invariant Space

The simulation results have been used to study the invariants of the velocity gra-

dient tensor. Topological analysis of the fine scale, high gradient, motions in the

incompressible wakes revealed the following:

• The wakes with a three-dimensional subharmonic have both a greater quantity

of and more intense high gradient motions.

• The characteristic shapes of the joint probability density functions for invariants

of the incompressible plane wake are similar to those observed in the other three-

dimensional flows discussed in section 1.1.2:

- Joint pdfs of the second and third invariants of the velocity gradient tensor

have a characteristic "skewed teardrop" shape, with high gradient motions

tending to be of topological types stable vortex/stretching and unstable

node/saddle/saddle.
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- Joint pdfs of the second and third invariants of the rate-of-strain tensor

indicate that the most dissipative motions are associated exclusively with

an unstable node/saddle/saddle type strain topology. More moderately

dissipating motions, which account for the majority of the integrated dis-

sipation in the flow, are also very strongly associated that strain topology.

- Joint pdfs of the enstrophy density and vortex stretching indicate that

highly rotational motions occur in regions where the vortex stretching is

positive, even at late times when the intensity of all gradients are de-

creasing in the wake. In addition, regions with moderate to high rates of

dissipation tend to have the vorticity vector aligned with the intermediate

principal rate-of-strain direction.

• Increasing the wake Reynolds number increased the intensity of the gradients

while preserving the shape of the pdfs in invariant space. In effect, the shape of

the pdfs are Reynolds number invariant. In addition, changes in the phases of

the initial disturbances have minimal effect on the shape of the invariant space

pdfs.
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Numerical Methodology

2.1 Introduction

The challenge of calculating free shear flows using spectral methods has been ap-

proached using a variety of numerical schemes. The problems of interest are turbulent

flows which are periodic in two directions and have vorticity which is "compact" (of

finite extent) in the third direction. An early computation of such a case was per-

formed by Orszag & Pao [30] who simulated a temporally developing momentumless

wake using a pseudo-spectral method. They approximated the infinite direction in

the flow by truncating to a finite domain and using sine and cosine transforms in the

inhomogeneous direction, effectively imposing free slip conditions at the non-periodic

boundaries of the finite computational box. A similar approach using a three-dim-

ensional vorticity stream function formulation was taken by Mansour, Ferziger, &

Reynolds [25] to compute a time-developing turbulent mixing layer using a large

eddy simulation technique. The disadvantage of approaches such as these is that

they fail to accurately treat the irrotational field in the infinite direction by forcing

the flow to be parallel some finite distance into the freestream regions.

Cain, Reynolds, & Ferziger [4] analyzed the method of Orszag & Pao [30] and

found that the size of the domain in the inhomogeneous direction can influence the

computational results. To circumvent the restriction of a finite size domain, they

introduced a cotangent mapping in the infinite direction which allowed the use of

18
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Fourier spectral methods in the doubly infinite domain. This effectively moved the no-

stress boundaries out to a very large distance from the rotational region, minimizing

the error inherent in such an artificial boundary condition. This sort of approach

has become the mainstay of numerical simulations of flows with infinite domains (i.e.

Chen, Cantwell & Mansour [10], Laurien & Kleiser [23]). The disadvantage of this

scheme is that it sacrifices some of the simplicities of using the Fourier transform (such

as differentiation in physical space being represented by simple multiplication by a

wave vector in Fourier space), resulting in greater coding complexity. Computational

resolution is also wasted on regions of the flow which are free of vorticity.

Spalart, Moser, & Rogers [44] approached the problem by using a set of basis

functions for their expansions that are defined on the semi-infinite interval. They used

a set of Jacobi polynomials in a mapped variable to represent the vortical region, and

slowly decaying exponential "extra" functions to accurately represent the potential

flow far from the vortical region. This combination of quickly decaying and slowly

decaying basis functions allowed them to achieve good accuracy and good (though

not spectral) convergence. The drawback is that the use of Jacobi polynomials is

numerically expensive as each Jacobi transform must be accomplished by quadrature.

In addition, this approach, as well as the Cain mapping approach, tends to concentrate

resolution very near the centerline, at the expense of resolution a small but finite

distance away. This approach is well suited to mixing layers, but is inconvenient for

flows for which high gradients and small scales develop away from the centerline as

occurs in the wake.

The goal of the method described here is to avoid the drawbacks of the previous

methods. It is based on an algorithm similar to one presented by Corral & Jim6nez

[15]. Fourier transform techniques, for which fast numerical transforms exist, are used

to solve problems which have one infinite and two periodic directions without hav-

ing to resort to nonlinear mapping of the infinite direction to a finite domain. This

preserves all of the benefits of using Fourier transforms (differentiation accomplished

by multiplication by a wave number, integration accomplished by division by a wave

number, interpolation accomplished by multiplication by a phase factor, resolution
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Y2 (t)

......................................... x_(t)
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Figure 2.1: Numerical domains

changes accomplished by adding or truncating zeros in wave space) while still accu-

rately representing the boundary conditions. It also allows for uniform resolution of

the domain of interest.

2.2 Approach

The basic approach is to divide the flow into three domains in the non-periodic

direction as shown in Figure 2.1. Domain I extends from -oc to Yl(t), domain II

from Y_(t) to Y2(t), and domain III from Y2(t) to +oc. The boundaries Y_(t) and Y2(t)

are chosen such that domain II contains all the vorticity in the flow, and domains I

and Ill are vorticity free. This choice of Y_(t) and Y2(t) requires that the vorticity

magnitude and vorticity gradient at the top and bottom of domain II be zero (or

in practice very small). This is the case for many flows of interest, particularly at
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moderate to high Reynolds number where the interface between rotational fluid and

irrotational fluid is sharp. Choosing Yl(t) and Y2(t) in this way allows the vorticity in

domain II to be treated as fully periodic. The vorticity equations governing the flow

may then be solved with a pseudo-spectral technique which uses standard complex

Fourier transforms in all three directions.

The inherent non-periodic nature of the flow in the cross stream direction only

enters into the equations of motion through the nonlinear term of the momentum

equation, which involve the velocity. The vorticity, wj, is not directly affected by the

images of the flow created by artificially introducing periodicity in the non-periodic

direction. The vorticity is effectively zero at the nonperiodic edges of the box and

can accurately be expanded using periodic functions. The velocity, uj, which is a

solution of a Poisson equation involving the vorticity as a source term, is affected

by the vorticity images and must be corrected to remove the effect of the artificial

periodicity. This is accomplished by adding an incompressible, irrotational component

to the velocity field in domain II which matches it to analytic asymptotic solutions

for the velocity in domains I and III.

Note: In the following discussion, all quantities have been normalized by the

initial flow halfwidth b0 and the freestream velocity U0 as follows:

_xy uj uy Uot ° p 1 (p_
3"j - bo = t- bo p - \p]

V ° K ° V

u - _ _ - (2.1)
boUo boUo - Pr

where ()° are the unnormalized quantities. The initial halfwidth, b0 is defined as half

the width of the initial mean velocity profile at half the maximum mean defect velocity

(see figure 2.2). The mean profile is generated by averaging over xrx3 planes.
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Figure 2.2: Mean flow parameters

Governing Equations

V

Xl

2.3.1 Vorticity Form of the Navier-Stokes Equations

The incompressible, uniform density, Navier-Stokes equations are

uj,_= 0 (2.2)

uj,_ + ukuj,k + P,_.2_J= uuj,_k (2.3)
P

where uj is the velocity in the xj direction, p is the pressure, and p is the (con-

stant) density. Here, and throughout the remainder of this dissertation, the Einstein

convention
N

ajbj - __, ajbj (2.4)
j=l

will be used to simplify the form of the equations. Here N is the number of physical

dimensions in the problem.



CHAPTER 2. 5 r.;MERICAL METHODOLOGY 23

Rewriting the nonlinear term in equation 2.3 using the identity

Ukllj, k = (.jklUl_k .3F

(UkUk ),j

2
(2.5)

(adj _ (.jklUl,k (2.6)

yields

uj,j = 0 (2.7)

u_,_ + qk_u_ok + (P-- + UUj,kk (2.8)
p 2 J,3

where wj is the vorticity component in the xj direction, and ejkt is the alternating

unit tensor

1,
ejkt -- -1,

O,

if (j,k,l)= (1,2,3), (3,1,2), or (2,3, 1)

if (j,k,l)= (3,2,1), (1,3,2), or (2, 1,3)

ifj=k,j=l, ork=l.

(2.9)

Taking the curl of equation 2.8 and using the identity

¢jkt¢,Zk = 0 (2.10)

where ¢ is any scalar, yields the vorticity form of the Navier-Stokes equations.

[ + = ] (2.11)

I wj = ejktuz,k. ] (2.12)

These equations will be solved along with the set of passive scalar equations

I Cj,, + _C_,_ = _Cj,_ [ (2.13)

where Cj is a scalar concentration and _ is the scalar diffusion coefficient. Since

equation 2.13 is linear and homogeneous in Cj the magnitude of Cj is arbitrary,

hence normalization is irrelevant. In addition, because of the form of equation 2.13
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Cj may be offset by any arbitrary constant. This affords wide latitude in the choice

of initial conditions for the scalar field.

2.3.2 Stretching Grid

In order to maximize the available resolution for a given number of grid points while

at the same time keeping the vorticity at the edges of the resolved box small to satisfy

the asymptotic matching condition, a growing uniform grid is used in the non-periodic

x_ direction. To implement this, the coordinates in each direction are rescaled to an

interval of length 2rr, the "natural" interval for Fast Fourier Transforms.

27rxl 2rx2 2rx3

_1- L1 _2(t)-L2(t) (3- L3 (2.14)

where La and L3 are the fixed box lengths in the periodic xl and xa directions re-

spectively, and L2(t) = t_(t) - tJ_(t) is the time varying box size in the aperiodic x2

direction. For convenience it will be assumed that Y2(t) = -_(t).

Applying these coordinate transforms to equations 2.11, 2.12, and 2.13 yields

_2L2,t

wj,t L_ wj,2 + ejkt(el,_quqw,.,),,.,,Amk = v_j,ktAtmAmk (2.15)

wj = ejklUt,mAmk (2.16)

_L_,_

Ci't L_ Cj,2 + ukCj,mAmk = _Cj,ktAtmAmk (2.17)

2r / Lj, if j=k;Ajk - (2.18)
0, otherwise.

The second term on the left hand side of equation 2.15 and the similar term on

the left hand side of equation 2.17 are due to grid stretching. They may be absorbed

into the nonlinear terms by defining a grid-relative velocity u_ = uj - L2a(t)_262j/2r.

In terms of this modified velocity the equations of motion become

_j,_ + _jkt(_l,_qUqWn),,_A,_k + 7wjL2,t/L2 = vwj,ktAl_A_k (2.19)
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wj = ejklUt*,rnAmk = ej_:lUl,rnAmk (2.20)

Cj,t + u*kaj,mAkr_ = xCj,ktAtmAmk (2.21)

2rr/Lj, if j=k;Ajk =--- (2.22)
0, otherwise.

1, if j=l,3;3' - (2.23)
0, otherwise.

The remaining grid stretching terms in equation 2.19 are in a form that may be readily

Fourier transformed.

In domains I and III, the terms in equation 2.19 are identically zero, and the

left hand side of equation 2.20 goes to zero. Equation 2.20 will be solved to ob-

tain asymptotic solutions for the velocity in domains I and III and total velocity in

domain II.

2.4 Numerical Method

2.4.1 Transformed Equations

The governing equations 2.19 through 2.21 are solved in domain II using a standard

Fourier pseudo-spectral technique treating the vorticity as periodic in the aperiodic

direction (2. Note that all of the terms in equation 2.19 can be treated as periodic

since by construction wj ---* 0 at the top and bottom of the computational box. The

same holds true for the scalar convection equation 2.21. The governing equations are

advanced in wave space with nonlinear terms which are calculated in physical space

at each timestep.

Equations 2.19, 2.20, and 2.21 Fourier transformed in all three directions become

^ 3"L2,t . .

wj,, + (--_--- + t,&._kkktAl_A,,,k) + zk_._(ejkl(et,wuqw,)Akm) = 0

&j = iejktfi_ kmA,nk = ie_mfitkmA,nk

(2.24)

(2.25)

(2.26)
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{ 2_r/Ls, if j=k;Ask = (2.27)
0, otherwise.

1, if j=l,3;= (2.28)
0, otherwise.

where ks is the wavenumber in the _S direction, hatted quantities are Fourier trans-

forms of the corresponding physical vector, and .T'() is the Fourier transform operator.

The diffusion term in equation 2.26 as well as both the diffusion term and the grid

stretching term which appear in equation 2.24 are absorbed into the time derivative

terms by use of integrating factors, yielding the basic set of equations in wavespace.

[ 2----(-(_)(G(t)&s) t + ik,,,.Y'(ejkZ(et,wu'qw,_)A,_k) = 0
(2.29)

&j = iejktfiTkmAmk = ieSktfitkmA,,_k ]

1

-i?_I--(-_(H(t)ds),t + 9V(u/AmkCj,m) = 0

(2.30)

(2.31)

G(t) = L_(t)exp(uktkk At,,,hmkdr) (2.32)

H(t) = exp(xktkk AjmAmkdr) (2.33)

Ajk =-- { 2r/L j, if j=k;O, otherwise.

={1' if j=l,3;O, otherwise.

The solution procedure for this set of equations is as follows.

(2.34)

(2.35)

• The periodic part of the velocity field is calculated from the periodic vorticity

in wave space for domain II.

• The velocity and vorticity fields are transformed into physical space in the

aperiodic direction.
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• An aperiodic field is added to the periodic velocity field to form the total,

aperiodic, velocity.

• The velocity and vorticity fields are transformed into physical space in the

remaining two directions and the nonlinear terms are formed.

• The nonlinear terms, which are periodic by virtue of the vorticity going to zero

at the edges of the box, are then transformed in all directions back into wave

space.

• The nonlinear terms are dealiased.

• The nonlinear terms are used to advance the vorticity field in time.

2.4.2 Asymptotic Matching of Velocities

The crux of the procedure outlined above is the calculation of the aperiodic component

of the velocity field. This is calculated from the curl of 2.20 which is

uj,ktAtmAmk =--ejk_wZ,,_Amk. (2.36)

Only one component of uj need be solved for, since the remaining two components

can be constructed from continuity and the definition of vorticity. It is convenient to

solve for the cross-stream velocity u2. The equation for u2 is transformed in the two

periodic ((1 and (a) directions, but not in the non-periodic ((2) direction giving the

second order ordinary differential equation

1 _ (k_ k 2 1
"_3 fi = ___Tr2kkAkte21,_bm (2.37)L'_:2u2'2_ +'L_ + L_ ) 2

2 2 2 k_/L_) 0, the general solution to equation 2.37 isFor K s = L2(k 1/L 1 + >

- k_ k_(2) + Bexp(- 2(_-_12+ ½_2) (2.38)
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where fiR is the particular solution of equation 2.37 (zero in domains I and III where

the vorticity is zero, calculated numerically from the vorticity field in domain II), and

and /} are functions of K which are determined by asymptotic matching of the

velocity and velocity gradient.

The solution for the velocity must be bounded at (2 = +_, hence in the three

domains

2_iIeK(2 domain I
_2 = _P + ,411 eK_ + �}lie -K_2 domain II (2.39)

[_lil e-K_ domain III.

Matching the velocities and velocity gradients at the domain boundaries _2 = +Tr

yields four algebraic equations in four unknowns

AI e-rK .= _P(-Tr) + AII e-rK +/}II erK (2.40)

KAI e-Trh" = ,_P2(-T) + Kfizze -'_K _ K/}zze '_I"

/}llle -'_I_" = _P(r) +AlIe '_u + Bile -'_K

_ K/}lzze -'_K = fi2P2(r) + K)ilIe "_K- KBIIe -TrK.

Solving for ,3,1i and/}l,, gives

(2.41)

(2.42)

(2.43)

fi_ =fip+_l (( fiP2(-_r)K _P(-_r))exp(-K(2)- ( fi_2(r)K

(2.44)

] (2.45)K = ,2_-_12 + L_ "

Solutions for ul and us are constructed from the incompressibility condition and the

definition of vorticity.

If K = 0, equation 2.37 is replaced by the two-direction transform of 2.20 with

kl = ks = 0

&j = ej21fil,2A22. (2.46)
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Integrating in the _2 direction yields

I -27r_2fiJ- L2 ej_l&l+Dj
(2.47)

where/)j are constants which are determined by the mean velocity in each direction.

Solutions for ul and fi3 are constructed from the resulting solution for u2 in do-

main II for each (kx, k3) pair and the total solution for the velocity is transformed to

physical space in the periodic directions. The cross product of the velocity and the

vorticity is taken to form the periodic nonlinear term. The nonlinear term is then

transformed back into wave space to advance the vorticity and scalar fields in time.

2.4.3 Time Advance

The time advancement method used for all dependent variables is the second order

Runge-Kutta scheme

¢,, = f(¢;t) (2.48)

¢_+' = ¢'_ + Atf(¢";t '_) (2.49)

-- ¢" + --_(f(¢"; t") + f(¢_+a;t"+a)) (2.50)

where n is the time index.

This particular scheme was chosen because it minimizes memory requirements for

a given simulation size. It requires only two copies of the three vorticities and each

scalar (one field at t = t n and one at t = t_ +1) to be stored at any given time. It also

allows for the use of the random-shift dealiasing scheme described in section 2.4.5 and

appendix C, which helps make maximum use of the available computational power.

Applying this scheme to the governing equations 2.29 and 2.31 yields

A.+ z_ o- ' "
+ ik +'.T'n+l((wqu etqr)Amkejkl))

(2.51)



CHAPTER 2. NUMERICAL METHODOLOGY 30

d;+l _ H'_ ¢_7n ._t H n * ,H-+' "-'3 + -- (H-_-_'T'_(ukhmkC_,m)

+9 w+' (u_ A.,k Cj.m)).
(2.52)

The precise forms of G" and H '_ depend on the way in which the grid is stretched.

In the present code, grid stretching was taken to be piecewise linear, hence

I G '_ ( L_ _w Lk_a2 k_(1G-_, = \ L_+a ] exp(-4_r:u( At + L_,, /_
(2.53)

and

: k2 1.n _exp(_47r2_(k__At+ k_ (1 L_+, )+__3At)).H'--_I L1 L'_,t" [_:

This is the form of the equations implemented.

(2.54)

2.4.4 Accuracy and Stability

As implemented, the code has standard Fourier spectral accuracy in all three spa-

tial directions and is second order accurate in time. The second order Runge-Kutta

timestepping scheme used is "weakly" unstable (it is unstable in the absence of vis-

cosity, though only mildly so for small At). However in the presence of even a small

viscosity the method is stable for a range of At.

This can be quantified by applying the method to the one dimensional linear

convection-diffusion equation

t/,t -_- CU,x ---- tt'a,:c x (2.55)

for a single Fourier component

= c(t)exp( ). (2.56)
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Figure 2.3: Neutral stability curve for second order Runge-Kutta timestepping algo-

rithm applied to linear con-vec-tion-diffusion equation u,t + cu_ = uu_,_. Coordinates
2_k and r _ 2rkcAtare B = ¢Na_ Naz

Substituting equation 2.56 into equation 2.55 yields

2rikc 4rr2k2v "_u, - N A x + -N-_A--fiz2] u

- Lu. (2.57)

Applying the timestepping algorithm from equations 2.48 through 2.50 to equation

2.57 .gives

(u "+1= I+LAt+ - u '_. (2.58)

The timestepping method is considered stable if u '_ remains finite as n _ oo. This

will be true if

= I+LAt+ - _<1. (2.59)
u n ]

It is convenient to define the dimensionless variable

r _- 2zrkcAt 2rkcF L (2.60)
NAx N
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and the dimensionless parameter

2rvk
B = (2.61)

cNAx

where CFL is the Courant-Friedrichs-Lewy number. In terms of these dimensionless

quantities

LAt=-(B+i)r (2.62)

and the stability condition from equation 2.59 expands to

(B
lJ2r3_ - B(B 2 + 1)r 2 + 2B2r - 2B <_ O.

+

4
(2.63)

The neutral curve for equation 2.63 is shown in figure 2.3. The equation is third

order in r (hence third order in At) and no simple analytic stability criterion exists.

In order to choose a At, therefore, a simple Newton method solver was used to solve

equation 2.63 numerically for r(B) at each timestep. Note that for a given timestep

the parameter B is a quantity with known limits (at k = 1 and k = N/2). At each

timestep r(B) was evaluated twice, once for k = 1 and once for k = N/2. The

minimum of the two resulting values for At, multiplied by a factor of C = 0.8, was

used for the next timestep size.

The factor C < 1.0 was necessary to ensure time accuracy in addition to stability

of the method. Several test runs with identical initial conditions (the same as the test

case discussed in section 2.8.3) but with C varying from 0.4 to 1.0 were performed.

The value C = 0.8 was found to be sufficiently small for the solution to converge to

a solution independent of C.

2.4.5 Alias Control

Following the approach of Rogallo [34], aJiasing was controlled with a combination

of high wavenumber masking and phase shifting. All modes with wavenumbers such

that

k, 2 (2.64)N--7+ N--7+ N--7>
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are set to zero. This eliminates all two- and three-dimensional aliasing, leaving only

the one-dimensional aliasing term in each direction. The one-dimensional alias errors

are dealt with by phase shifting the data a random fraction of a grid cell width in

each direction at every other time substep followed by a further shift of exactly one

half a grid cell width in each direction at the subsequent time substep. This random

shifting cancels the aliasing error to second order in time, the same order as the

time advancement algorithm. Using this dealiasing technique instead of a perfect

(2/3 rule or multiple phase shift) technique reduces both memory requirements and

operations per timestep. See Appendix C for a more complete discussion of aliasing

and dealiasing for Discrete Fourier Transforms.

2.5 Code Implementation and Data Management

The code described above has been implemented on an Intel iPS(/860 supercomputer.

Also known as the "Hypercube", the iPSC/860 used is a massively parallel computer

which has 128 computational nodes each consisting of a 40 megahertz Intel i860

processor with 8 megabytes of random access memory (RAM). The code is written

in VECTORAL, a high level programming language developed by Wray [57] which

facilitates the handling of large data sets.

The architecture of the machine dictated the implementation of the code. The

whole simulation, executable and data, had to fit in the distributed RAM on the

machine. This requires careful division of the data into useful subsets which reside

separately on each processing node. The method described is natural to implement

on a machine with such an architecture since nearly all of the operations at any given

point in the algorithm are performed independently on separate parts of the data set.

This leads to a simple division of tasks among the multiple processors, making for a

fast and efficient code.

In order to perform a transform on a line of data, a given processor must have

all the data in the transform direction for that line. To achieve this, the data was

structured for a two pass method, with each of the N computational nodes storing
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Table 2.1: Code Structure

Pass 1

1. Transform nonlinear terms into wave (2 space, shifted mesh.

2. Unshift nonlinear terms.

3. Advance governing equations for substep.

4. Save data and/or stop if necessary.

5. If first R-K substep, calculate At, dealiasing shifts, integrating factors, etc. for

timestep.

6. Zero "oddball" (kj = Nj/2) wavenumber contributions.

7. Zero high wavenumber modes to eliminate multi-dimensional aliasing.

8. Shift data for one-dimensional alias control.

9. Form needed _2 derivatives of data.

10. Transform data into physical _2 space, shifted mesh.

11. Execute Pass 2.

Pass 2

1. Transpose data to ((1,_3) planes.

2. Calculate additional velocity and form corrected velocity terms.

3. Form needed (1 and _3 derivatives of data.

4. Transform data into physical _1 and (3 space, shifted mesh.

(=) for CFL stability requirements.5. If second R-K substep, calculate max _

6. Form nonlinear terms in physical space, shifted mesh.

7. Transform data into wave _1 and _3 space, shifted mesh.

8. Transpose data to ((1,_2) planes.

9. Execute Pass 1.
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and manipulating 1/N of the total data set during each pass, and swapping data

between passes.

For the first pass, each computational node holds all the _1 and (2 data for 1IN

of the _a planes. All _2 derivatives and transforms are evaluated during this pass. For

the second pass, the data is swapped between computational nodes so that each node

now holds all of the _1 and (a data for 1/N of the (2 planes. All (1 and (a derivatives

and transforms are evaluated during this second pass. The data is then swapped back

to its original configuration and the governing equations are advanced in time. Table

2.1 lists the operations executed during each time substep.

2.6 Boundary Conditions

Periodic boundary conditions are imposed in the streamwise _1 and spanwise _3 di-

rections

(I)(_ 1 n1- 271", _2, _3; t) : (I)(_l, _2, _3; t) (2.65)

¢((1, (3 + t) = (3;t) (2.66)

where ¢ is any dependent variable.

The boundary conditions imposed on the vorticity field in the cross-stream direc-

tion _2 are that the vorticity is zero outside the resolved box

wj=0 for(2<0 or (2>2rr (2.67)

and that the velocity perturbations go to zero at infinity

(2.68)

The boundary conditions imposed on the scalar field in the cross-stream direction

are that each scalar concentration be the same at the top and bottom of the resolved

box

Cj(_l, 0, (a) = C_((1,2r,_3). (2.69)
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This is most easily satisfied by picking initial scalar concentration distributions that

go to zero in the freestream.

2.7 Initial Conditions

2.7.1 Vorticity Field

The initial conditions for the vorticity field of the time developing wake consist of a

Gaussian mean streamwise velocity profile

ftl = 1 -Auq_oe -c_] (2.70)

_2 _ '_3 _ 0

which gives the mean vorticity profile

(2.71)

&l = w2 = 0. (2.72)

5;3 = -2clAuq_oX2e -c1_ (2.73)

The centerline velocity defect, Auq_0, was chosen to be 0.692 and cl was chosen to

be 0.69315. This particular profile was used in the experiments of Sato & Kuriki [39]

and Corke, Krull, & Ghassemi [14], and in the computations of Chen, Cantwell, &

Mansour [10]. It gives an initial wake halfwidth of b0 = 1.0 and an initial Reynolds

number based on halfwidth of Reb = 0.692/v.

For this mean velocity profile, the relationship between the various possible wake

width length scales is as follows:

b0 = 1 (2.74)

1

/5$0 = (1 - fil)dz2 = rr 2 Auc_obo = 1.473b0 (2.75)
oo

_eo =f:cfi,(1-O,)dx:= (r___] 1 Auq_obo=O.7524bo. (2.76),cl,
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Though the wake halfwidth, bo, is used here as the reference scale (see figure 2.2 on

page 22), the other scales given above will be used later when comparing results to

da:,' from other studies.

Small disturbances which were periodic in the streamwise and spanwise directions

were added to the mean flow.

+

+

+

+

+

+

+

Q(_I, _2, _3; O) =

Real[el ooDloo exp(ia(a )

Cmo{_moexp(i a_a + _bmo)
2

eoolQom exp(i a(1 + q_om )
4

cl°°fia°°(exp(i(o_l - _3 + _,oo)) _ exp(i(a(, + j3(3 + _,oo)))

co,o_olO(exp(i a_, --/3_3 + (_0102 ) -exp(ia_a + 13_3 + _b°1°2 ))

eom_Om(exp(i a(1 -/3(3 + 4Pm4 ) - exp(i 0_1 + /_3 "]'- (_0014 ))

• . -]
(2.77)

where Q is any of the three vorticities, f_ = f2(_2) is the mean flow, and fi = F/((2) is a

disturbance eigenfunction determined from linear theory as described in appendix B.

The quantities o and/3 are the streamwise and spanwise wavenumbers of the funda-

mental mode respectively, and ¢ is a disturbance phase angle. Subscripts indicate a

two-dimensional disturbance, superscripts indicate a three-dimensional disturbance,

and the positions of the "l"s indicate the streamwise wavelength of the mode. As an

example, ¢OOl is the disturbance amplitude of the three-dimensional disturbance at

the sub-subharmonic streamwise wavelength.

The disturbance phases, ¢, are all defined with respect to the two-dimensional

fundamental disturbance, with ¢ = 2_r corresponding to a physical shift of one fun-

damental wavelength. For the two-dimensional disturbances, the phase is measured

from the first zero (_1 = 0) of the fundamental velocity disturbance to the first zero

of the longer wavelength velocity disturbance as shown in figure 2.4. Figures 2.5

and 2.6 show the phase for the three-dimensional fundamental and three-dimensional
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Figure 2.4: Two-dimensional disturbance phasing

subharmonic disturbances respectively. In each case, the phase is measured from the

first maximum of the two-dimensional vorticity fundamental disturbance to the first

crossing of the maxima of the pair of oblique vorticity disturbances.

Hence ¢010 = 0 represents the phase of a three-dimensional subharmonic of the

vorticity with its first crossing points aligned with the maximum of the two-dimension-

al fundamental. Similarly, ¢010 = 7r/4 represents a three-dimensional subharmonic

with its crossing points aligned with zeros of the two-dimensional fundamental.

All of the flows simulated had two-dimensional disturbances at a wavelength equal

to the fundamental (K/_rm£n) mode superimposed on the mean (Cl0o > 0). The three

dimensional disturbances were pairs of oblique waves with equal and opposite span-

wise wavenumbers oriented 60 ° to the spanwise direction (/3/o = tan(60°)). This

choice of three-dimensional modes was motivated by the stability analysis of Flem-

ming [16] which suggested that the most unstable three dimensional modes should

be wave pairs at angles near 60 ° at the subharmonic wavelength. The experimental

observations of Corke, Krull, & Ghassemi [14] supported this analysis.

The amplitude for each disturbance eigenfunction was chosen such that the inte-

gral over x2 of the magnitude of the disturbance velocity eigenfunction for the given

mode was equal to 0.02U0bo. This initial magnitude was found to be small enough

for the initial wake growth to be within the linear regime. At the same time it was

large enough to allow the wake to enter the non-linear growth regime without undo

expenditure of of computational time.
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Figure 2.5: Disturbance phase for three-dimensional fundamental.

2.7.2 Passive Scalar Field

Though the method allows for carrying an arbitrary number of passive scalars, in

practice only one scalar was carried in the simulations. The initial passive scalar

concentration at each point was taken to be the magnitude of the vorticity (the

enstrophy density)

C, = (wkwk) ½ . (2.78)

Since the vorticity perturbations were small, the initial scalar field is very nearly the

square of the mean vorticity field

C1 _ 2clAuc_o]x_l e-_4. (2.79)

After the simulation was initiated, the vorticity and scalar fields were allowed to

evolve independently.
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Figure 2.6: Disturbance phase for three-dimensional subharmonic.

2.7.3 Grid Stretching Rate

The grid stretching rate, L2,t, was initially set to follow a L2 "-_ (t - to) 1/2 growth

curve to match the expected long-time growth of the wake. This gives

L:,,(t)- Lg(t = to) (2.80)
2toL2(t)

where to is a virtual time origin which depends on the initial Reynolds number.

The growth rate was periodically adjusted manually as the simulations progressed

to keep the magnitude of the mean vorticity at the boundaries of the resolved box

below a fixed percentage of the maximum mean vorticity magnitude. This manual

adjustment was primarily necessary during the initial stages in the development of

the wakes when the growth was significantly different than the asymptotic t 1/2 curve.
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2.7.4 Flow Reference Convention

In order to facilitate references to the various wake flows discussed throughout the

remainder of this document, it is useful to introduce a standard naming convention

which will present all the relevant information about a given flow in a compact form.

From this point forward, the simulations presented here will be referenced with a tag

of the form

(3D)
(R)((A))(2D) (2.81)

where (R) is the initial wake halfwidth Reynolds number, Reb, (A) is the angle of

the three-dimensional disturbances with respect to the spanwise direction (zero if

the flow is two-dimensional), and (2/)) and (31)) are three-element strings which

indicate which disturbance modes are present and gives their phases with respect to

the two-dimensional fundamental disturbance.

The possible elements in the strings (2D) and (3D) are x, which indicates the

given mode is not present, and 0, r/4, or 7r/2 which indicate that the given mode is

present and is at the corresponding phase with respect to the fundamental. The loca-

tion of the element in the string gives the wavelength of the disturbance as outlined

above for e and ¢. The first slot indicates a disturbance at the fundamental stream-

wise wavelength, the second indicates a disturbance at the subharmonic streamwise

wavelength, and the third indicates a disturbance at the sub-subharmonic streamwise

wavelength.
x_z

As an example, the tag 346(60)o_x refers to a wake with a Reynolds number of

Reb = 346, and disturbances corresponding to a two-dimensional fundamental (which

must be at a phase of 0 to itself), a two-dimensional subharmonic with ¢olo = re�2,

and a pair of 60 ° oblique disturbances with ¢01o = r/4.

In addition, the wildcard character '(?)' will be used to indicate that the given

x(,)x
parameter can take on any appropriate value. For example, the tag 346(60)0_

refers to all Reb = 346 wakes with a two-dimensional fundamental, a two-dimension-

al subharmonic with ¢01o = _r/4, and a pair of 60 ° oblique disturbances at any of

(.)(60)o_ refers to all wakes with a two-dimensionalthe calculated phases. The tag _ _0_
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fundamental, a pair of 60 ° oblique disturbances with ¢o10 = 0, and any of the initial

Reynolds numbers simulated.

2.8 Code Validation

The code has been validated with three sets of test cases. The first two tests, pure

diffusion and linear disturbance cases, compare results from the code to linear flow

solutions. The third is a comparison of results for identical initial conditions between

the present code and the well tested and generally accepted code of Spalart, Moser,

& Rogers [44] The results of these test cases are outlined below.

2.8.1 One Dimensional Diffusion

For two-dimensional parallel flow in the xl direction, the Navier-Stokes equations

reduce to the one-dimensional diffusion equation

ul,t = vul,_2. (2.82)

This equation admits analytic solutions for the diffusing parallel wake

to ½exp( x_ )
u, = 1 - Au_o(t---_o) 4u(t- to) (2.83)

and for the diffusing parallel mixing layer

X2

u, = 2erf((4u(t - t0))½ ) - 1. (2.84)

To check agreement with the analytic solutions, four two-dimensional test cases

were run: two parallel wakes started from a Gaussian velocity profile, one with grid

stretching turned off and one with grid stretching turned on; and two parallel mixing

layers started from an error function profile, again with grid stretching off in the first

and on in the second. Each case was run on a 4 × 128 × 4 grid on two computational
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diffusing parallel wake. L2(0) = 10.0. D: Computed wake on fixed grid, L2,t(t) = 0.0.
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centerline velocity defect. ---- : Analytic solution for total x2 momentum.

nodes. Two computational nodes were not required by the problem size, but were

used to verify internode message passing.

The numerical results and the analytic solutions are plotted in figures 2.7, 2.8,

and 2.9. The wake flow halfwidth, b, is defined as half the width at half the centerline

defect velocity. The mixing layer vorticity thickness is defined as the freestream

velocity difference divided by the maximum mean vorticity (in this case the vorticity

at the centerline).

The agreement between the numerical results and the analytic predictions for

t < 50.0 is excellent for both wake cases and for t < 225.0 for both mixing layer

cases. Past a time of t = 50.0 for the wake and t = 225.0 for the mixing layer the

simulations with fixed grids begin to deviate significantly from the analytic solutions

as the vorticity field outgrows the resolved domain. This violates, benignly, the

requirements of the numerical scheme.

The excellent agreement for even very late times for the cases with the grid growing

to keep pace with the spreading vorticity indicates that the diffusion portion of the
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code, including the implementation of the growing grid, works properly. Over the

course of the runs the wake simulation grid grew by a factor of nearly five and the

mixing layer grid grew by a factor of over nineteen. These are rather stringent tests

of the diffusion part of the implementation.

2.8.2 Linear Growth Rate

The second verification test for the code was a comparison between eigenmode growth

rates for a computed solution of the Navier-Stokes equations using the present code

and the eigenmode growth rates predicted by linear stability theory. The numerical

simulation started from a Gaussian mean profile perturbed by a very low amplitude

most-unstable eigenfunction (as predicted from linear theory). The eigenmode growth

rate was calculated by assuming that each eigenmode can be represented by a wave

having complex growth rate ac and complex modeshape Ui. In particular, for the ul

velocity component

fil(_,x_;t) = _71(_, x_)c -'°c'. (2.85)

Taking the logarithm of equation 2.85 and solving for the real part of the result yields

an equation for the growth of the disturbance

_cit = Real[ln fil (C_,x2; t ) - In/)l(a, x2)]. (2.86)

Hence, the growth rate, aci, is the rate of change of the real part of of the logarithm

of the given dependent variable.

Figure 2.10 shows the calculated linear growth rate and the predicted linear growth

rate for the test computation. The numerical simulation was performed on a 128 x

128 x 4 grid on 4 processor nodes. The flow Reynolds number was set at Reb = 1384

to reduce the effect of viscosity on the results as much as possible without requiring

excessive resolution. Agreement between prediction and the computation is excellent.

Deviations in growth rate near t = 0 are due to small errors in the disturbance

eigenfunction incurred while mapping the disturbance from the nonuniform numerical

mesh used by the linear stability solver code to the uniform numerical mesh used in
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Figure 2.10: Magnitude of two-dimensional fundamental disturbance vs. time for

parallel wake. --: Linear stability prediction. O: Computed flow.

the simulation code. The slight dropoff in the growth rate at late times for the

computed flow is due to viscous spreading of the mean flow, which is not accounted

for in the linear theory.

2.8.3 Comparison with Accepted Jacobi Polynomial Code

The final test consisted of a comparison between a numerical simulation using the

present code and a numerical simulation started from identical initial conditions using

the accepted code developed by Spalart, Moser, _: Rogers [44] (hereafter referred to

as the SMR code).

Figure 2.11a shows the three-dimensional vorticity magnitude for a Reb = 346

wake started from a Gaussian mean velocity profile with a two-dimensional distur-

bance at the most unstable (K£rm£n) wavelength and a three-dimensional disturbance

at the subharmonic wavelength and sixty degrees from the spanwise direction. For

this case grid growth was active with L2,_ = 0.1, which translates to a 50% increase

in grid size from the initial grid to the grid at the time shown. This condition should

provide the most stringent test of code performance.
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(a)

(b)

Figure 2.11: Enstrophy Density isosurface from direct numerical simulations of
_rOx346(60)o,_ wake. Icol = 0.7. (a) Present code. t = 103.3. (b) SMR code. _ = 104.4.
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Figure 2.11b shows the identical flow calculated using the Rogers and Moser code.

Some differences between the two calculations are expected due to differences in the

computational grid and time advance algorithms. Despite this, the magnitude and

shape of the structures in both codes are very similar even at the advanced time shown.

Such excellent agreement is a strong indicator that the code functions properly.

As a check of the resolution of the test simulation, two variants of the Taylor mi-

croscale, AT (calculated from all three velocity components) and AT1 (the traditional

microscale calculated from only the streamwise velocity) were computed as func-

tions of (2 (see appendix A for definitions of the microscales used). Both measures

gave a minimum nondimensional microscale length of approximately 0.9 (AT = 0.83,

AT1 = 0.87) at the time shown in figure 2.11a. That length corresponds to a minimum

of approximately 5 grid points in any direction, thus it is reasonable to conclude that

the flow is sufficiently resolved.

Figure 2.12 is a plot of the square of the flow halfwidth versus time for the same

two simulations. This represents a good measure of how well the codes match mean

flow characteristics. There is no significant difference between the results obtained

from the two codes. The small deviations at late time are due to small difference in
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flow time and the fact that the vorticity field is beginning to outgrow the well resolved

portion of the fixed mesh in the SMR code.

This test also gives a rough comparison of performance between the two codes.

The iPSC/860 run required 5 hours on 16 of the available 128 nodes to run to the

time shown. The Cray simulation took approximately 15 cpu hours spread out over

2 weeks of run time on a single processor of an 8 processor Cray-YMP.

2.8.4 Behavior Near the Matching Boundaries

The fundamental assumption of this method is that the vorticity remains confined

to the resolved domain (it is compact) and therefore the vorticity magnitude at the

matching boundaries remains negligible. It is important to know if this assumption

is valid in cases of interest, and what consequences arise when these assumptions are

violated.

Figures 2.13 and 2.14 show the behavior of the vorticity magnitude, normalized

by the maximum vorticity magnitude in the flow, near the matching boundaries for

two wake simulations. Figure 2.13 is data from the low Reynolds number two-dimen-

sional diffusing wake discussed in section 2.8.1. Figure 2.14 is data from the higher

Reynolds number strongly three-dimensional wake discussed in section 2.8.3. The

sample line for the data in this figure was chosen to be the one on which the high

enstrophy density regions of the wake pass closest to the edge of the box at late times.

This line of data represents the worst case condition.

At early times in each flow, the behavior of the vorticity magnitude near the

matching boundaries fit very well with the assumptions of the numerical method

(max Iwj I_dg_ << max ]wjlljo,_ ). Even at late times the flow near the boundary remains

well behaved. The small amplitude ripples near the matching boundary for the late

time of the Reb = 346 wake are due to the slight mismatch in the vorticity magnitude

between the top and bottom edges of the resolved domain. Attempting to resolve this

small jump using a finite set of basis functions results in Gibbs phenomenon waves

near the jump point.
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These small ripples are not a significant source of error in the simulations for a

number of reasons. First, the magnitude of the Gibbs phenomena ripples are pro-

portional to the magnitude of the vorticity mismatch across the edges of the resolved

box. Thus so long as the vorticity mismatch is kept small, the magnitude of the

ripples will be small. Second, the Gibbs phenomena ripples represent both positive

and negative deviations in the vorticity field (note that figure 2.14 shows magnitude).

Since the ripples are confined primarily to the edges of the resolved box, far from

the vorticity containing region of the wake, the integrated (Biot-Savart) effect of the

ripples is much smaller than the magnitude of the ripples would suggest. Finally,

the Gibbs phenomena ripples occur at the highest wavenumbers, which are strongly

damped in a well resolved viscous flow. Here the magnitude of the Gibbs waves are

less than 0.2% of the maximum mean vorticity at their worst (cut through widest part

of the wake). This magnitude is easily small enough to keep from having a significant

influence on the flow.



Chapter 3

Two-dimensional Simulations

3.1 Motivation

In order to have a reference with which to compare the three-dimensional wake calcu-

lations presented in the next chapter (starting on page 93), a set of two-dimensional

plane wakes was simulated with a variety of initial conditions and Reynolds numbers.

The effect of these parameters on the evolution of two-dimensional structures in a

wake and on the mean velocity profile is examined in this section.

3.2 Simulation Parameters

Two-dimensional simulations require a relatively small investment of computational

resources, and are therefore ideal for parametric investigations. Simulations with a

variety of combinations of disturbance wavelength and phases, and flow Reynolds

numbers were run. All of the simulations were initiated from a Gaussian mean wake

profile upon which a most unstable anti-symmetric (K£rmin) disturbance is superim-

posed. Combinations of subharmonic and sub-subharmonic disturbances were added

to the initial fields in some of the simulations. Wake Reynolds numbers based on

initial wake halfwidth and centerline defect velocity were varied from Reb = 69 to

Reb = 2768. The initial passive scalar field in all the simulations was set equal to the

52
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Figure 3.1: Two-dimensional disturbance phasing

initial enstrophy density at each point

cj = (_k) _ (3.1)

and the Prandtl number
1/

Pr = (3.2)
K.

was set to a value of 0.7. Table H.1 in appendix H lists all the two-dimensional wakes

simulated and their parameters.

Figure 3.1 gives a graphic summary of the disturbance wavelengths and the mean-

ing of the disturbance phases used in the two-dimensional simulations. Initial distur-

bances were combinations of most-unstable eigenmodes at the fundamental, subhar-

monic, and sub-subharmonic wavelengths. Note that the phase is always in reference

to the wavelength of the fundamental, so (for example) a phase of r/2 results in a

shift of one quarter of a fundamental wavelength. See section 2.7 for a more general

description of the disturbance functions.

3.3 Evolution of the Two Dimensional Wake

3.3.1 Initial Development

For all of the two-dimensional wakes studied, the early evolution followed the same

general pattern. This is typified by figure 3.2, which shows contour plots of vorticity
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Figure 3.2: Iso-vorticity contours for 346(0)g_ wake (two-dimensional fundamental)

at various times. (a) t = 22.6. (b) t = 49.7. (c) t = 70.1. (d) t = 83.6. (e) t = 97.1.

(f) t = 198.6. Contours are 0.01 _< [w I < 0.4 in increments of 0.05.
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at several times for the 346(0)_ run (an Reb = 346 wake with a two-dimensional

fundamental only). Note that these plots are in a frame of reference moving with the

free stream (moving left to right at speed U0 > fi¢_), hence the structures will appear

to be convecting from right to left. The evolution starts with the linear growth

of the disturbances, dominated by the growth of the most unstable (fundamental)

wavelength perturbation (figure 3.2a). This is followed by nonlinear growth and

rollup of the fundamental disturbance into a K£rm£n vortex street (figure 3.2b), which

consists of a staggered double row of roughly circular regions of vorticity, known as

"rollers". These are positive signed on the bottom of the wake, negative signed on the

top, and separated by regions of low enstrophy density (figure 3.2e). In the absence of

longer wavelength disturbances, the rollers become roughly circular in cross section

(figure 3.2f) and settle into a stable configuration. The wake then slowly diffuses

under the influence of viscosity.

The process of linear growth, saturation, and decay described above is readily

evident in figure 3.3 which shows the time evolution of the mode energy (the en-

ergy contained in motions with a given streamwise wavelength) of the mean flow

and fundamental disturbance..',ote that, in the figures, the mean energy line has
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been rescaled to fit on the same plot as the fundamental mode energy. The funda-

mental mode energy grows exponentially (linear growth region) until approximately

t = 30, the fundamental mode then enters a nonlinear growth regime, and saturates

at approximately t = 50 (at which time the vortex street has formed). Up to this

time the fundamental mode has been drawing energy from the mean flow. The fun-

damental mode then begins to decay, releasing energy into both shorter wavelength

disturbances and back into the mean flow. Oscillations in both the fundamental and

mean mode energies past a time of 100 represent a long period exchange of energy

between the mean flow and fundamental. These oscillations damp out as the wake

slowly approaches an asymptotic state in which the wake is dominated by diffusion

of the vortex street. These oscillations will appear again in plots of the evolution of

the halfwidth of this wake presented later in this chapter (figures 3.17 and 3.19).

Returning to the enstrophy density plots, figure 3.2c and figure 3.2d show a pinch-

ing off event in the development of the 346(0)_ wake. Fluid containing vorticity of

the opposite sign is convected across the wake centerline to the opposite side of the

wake during the rollup process. This sort of event is not unique to the temporal wake.

A similar convection of fluid across the wake is evident in the flow visualizations of the

wake behind a circular cylinder by Zdravkovitch [59] and direct numerical simulations

of a spatially evolving two-dimensional wake by Maekawa & Mansour [24].

Note that there is a slight asymmetry across the wake at the latest time shown

in this simulation. This asymmetry is due to the accumulation of small errors intro-

duced by the approximate dealiasing scheme, which introduces a very small amplitude

random forcing at the longest wavelengths. Such small numerical errors are sufficient

to break the exact numerical symmetry over a very long calculation, but do not have

a significant impact on the overall results at the times examined.

3.3.2 Effect of Disturbance Wavelength and Phase

The presence of a fundamental wavelength disturbance causes the initially uniform

wake to develop into the familiar double row of vortices that make up the K£rm£n

vortex street. The rows of vortices are staggered, with the array of rollers on one

side of the wake being 180 ° out of phase with the the rollers on the other side. The
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Figure 3.4: See caption page 59.
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Figure 3.4: Iso-vorticity contours for 346(0)_0_ wake (two-dimensional fundamental

and subharmonic) at various times. (a) t - 27.5. (b) t : 54.5. (c) t = 86.5. (d) t =

119.3. (e) t = 144.7. (f) t = 200.8. (g) t = 304.1. Contours are 0.01 _ Iwl _ 0.4 in
increments of 0.05.
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Figure 3.5: See caption page 62.
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Figure 3.5: See caption page 62.
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(g)

Figure 3.5: Iso-vorticity contours for 346(0)___ wake (two-dimensional fundamental

and subharmonic at _) at various times. (a) t = 27.6. (b) t = 54.7. (c) t = 85.6.

(d) t = 118.7. (e) t = 144.6. (f) t = 157.1. (g) t = 198.7. Contours are 0.01 <_ [w[ _<
0.4 in increments of 0.05.
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Figure 3.6: See caption page 65.
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Figure 3.6: Iso-vorticity contours for 346(0)_ wake (two-dimensional fundamental

and subharmonic at _) at various times. (a) t = 27.6. (b) t = 54.6. (c) t = 84.9.

(d) t = 107.2. (e) t = 119.6. (f) t = 155.4. (g) t = 247.7. (h) t = 301.1. Contours

are 0.01 < Iwl < 0.4 in increments of 0.05.
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addition of longer wavelength disturbances has the effect of strengthening some of

the rollers while simultaneously weakening others. This causes the rollers to merge,

orbit one another, or shred as the wake evolves. The details of the evolution depend

on which rollers are strengthened or weakened, and hence depends on the relative

phasing of the fundamental and subharmonic disturbances. Figures 3.4, 3.5, and

3.6 show the evolution of the vorticity fields for the wakes 346(0)_0_, 346(0)__%, and

346(0)__%. As stated above, the initial development of all of these wakes parallels that

of the flow in figure 3.2, which has only the fundamental wavelength disturbance, up

through the development of the vortex street. Significant differences arise only after

the fundamental disturbance begins to saturate during rollup.

In the wake in figure 3.4 (346(0)_), the subhaxmonic, which is at zero phase with

respect to the fundamental, acts to strengthen one of the rollers on the top of the wake

while weakening the other (figure 3.4b). Because of the phasing, the two rollers on

the bottom of the wake are initially of equal strength (the subharmonic disturbance

has zero amplitude at the locations where the bottom rollers form). The strong top

roller captures both of the bottom rollers (figure 3.4c), stretching them and forcing
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them together (figure 3.4d). The elongated bottom rollers then agglomerate leaving a

single new bottom roller and a pair of top rollers which are of roughly equal strength

(figure 3.4e,f). One of the top rollers is then pulled to the bottom of the wake and

sandwiched between the (periodic) bottom rollers. There it is stretched and slowly

absorbed by the bottom roller (figure 3.4g)

The wake in figure 3.5 (346(0)_]__), which has a subharmonic at a phase of 7r/4

with respect to the fundamental (shifted by one eighth of a fundamental wavelength),

follows a similar evolution as the wake in figure 3.5. A dominant top roller forms which

causes the bottom rollers, which in this case are of slightly different strengths, to

agglomerate into a single large roller. This is followed by the bottom roller capturing

one of the top rollers and forming a vortex pair. It is not clear whether this is a stable

arrangement, but it persists well past t = 200.

Simulations by Aref & Siggia [1] of a two-dimensional inviscid wake using a discrete

vortex method showed similar results. When they initiated their simulations with a

random variation in the position of their vortices (which translates into a random

initial disturbance field) they observed pairing of regions of vorticity of the same sign

and the formation of vortex pairs (as seen here) and triplets. The vortex pairs were

observed to persist through the length of the simulations.

Williamson & Roshko [56], in experiments on vortex formation in the wake of an

oscillating cylinder, observed similar asymmetric pairing of vortices. By varying the

frequency and amplitude of oscillation, they were able to produce repeatable wakes

with various combinations of single vortices and pairs of opposite signed vortices.

Under certain conditions the vortex pairs would self-convect away from the wake

centerline (cf. their figure 17), much as is seen here in figures 3.4 and 3.5.

The wake in figure 3.6 (346(0)_,), which has a subharmonic at a phase of 7r/2

with respect to the fundamental (shifted by one quarter of a fundamental wavelength),

undergoes a markedly different evolution. In this simulation, the phasing of the

subharmonic disturbance creates a symmetry condition such that each side of the

wake develops a strong roller and a weak roller, with the difference in strength between

the rollers on each side of the wake the same. Instead of one side of the wake pairing

and then absorbing a roller from the other side, the symmetry of the flow allows the
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rollers on both sides of the wake to pair simultaneously. Note that this results in

a much faster growth of the new vortex street than either of the other two wakes

presented (t _ 160.0 as opposed to t > 200.0 for both 346(0)_0_ and 346(0)___:). The

resulting wake is nearly symmetric across the wake centerline (the small asymmetry

is due to the fact that the value of r could only be represented to a finite accuracy),

which is not the case for the wakes in figures 3.4 and 3.5.

Maekawa, Mansour, & Buell [24] performed direct numerical simulations of the

two-dimensional spatially evolving incompressible wake forced with high amplitude

random noise. Groups of structures very similar to those which appear in figures

3.4, 3.5, and 3.6 appear in those simulations (cf. their figure 11). At least for some

structures in the spatially evolving wake, the random noise behaves dynamically like

a fundamental plus a subharmonic at a random phase.

Figures 3.7, 3.8, and 3.9 show the evolution of the mean, fundamental, and sub-

harmonic mode energies for the wakes shown in figures 3.4, 3.5, and 3.6. Up to a time

of approximately t = 30 the energies of the mean and fundamental mode develop as

if there were no subharmonic disturbance present. This is consistent with the fact

that up to that time the wake is in a linear growth regime, and therefore the main

flow of energy should be from the mean to the fundamental.

After a time of t = 30, the subharmonic has gained enough energy to begin to

affect the development of the fundamental mode. The presence of the subharmonic

disturbance, which initially saps energy from the fundamental, lowers the saturation

(peak) energy of the fundamental disturbance and causes it to saturate slightly earlier.

The subharmonic experiences a "mini-saturation" slightly after t he fundamental mode

saturates, and begins to decay until a time of approximately t = 60. The subharmonic

then begins to rapidly extract energy from the fundamental disturbance.

Up to a time of t = 90 the energies in the flows with a subharmonic disturbance

develop identically, independent of phase. The time _ = 90 corresponds to the time

at which the rollers in the initial fundamental wavelength vortex street begin to pair

(figures 3.4c/d, 3.5c/d, and 3.6c/d). After t = 90 evolution of the mode energies be-

gins to become phase dependent. Between t = 90 and t = 150 all of the subharmonic

wakes show a periodic exchange of energy between the fundamental and subharmonic
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(a)

(b)

Figure 3.10: See caption page 71.
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(c)

(d)

Figure 3.10: Iso-vorticity contours for 346(0)_o_ wake (two-dimensional fundamental,

subharmonic, and sub-subhaxmonic) at various times. (a) t = 25.5. (b) t = 48.6.

(c) t = 102.5. (d) t = 204.4. Contours are 0.01 __ [w] < 0.4 in increments of 0.05.
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disturbances, as well as between the fundamental and the mean (this is most obvious

in figure 3.9, but appears to a lesser degree in the other two figures). In each case,

the fundamental eventually decays, dumping its energy into both the subharmonic

and the mean, leaving the subharmonic as the dominant disturbance mode.

All of the wakes with subharmonic disturbances develop large structures that

could potentially be constricted by the finite streamwise size of the box. To attempt

to get a handle on the significance this constriction on the development of the wakes

in figures 3.4 through 3.6, a wake with a sub-subharmonic disturbance was simulated.

Figure 3.10 shows plots of iso-vorticity contours at four times in the development of

the 346(0)_ wake. Comparing figure 3.10 with the results for the 346(0)_0_ wake in

figure 3.4, it is clear that at least up to a time of t = 200, the finite length of the

computational box is not unduly affecting the wake structure. The sub-subharmonic

disturbance has only a small noticeable effect on the development of the wake. Only at

very late times is the presence of the sub-subharmonic disturbance likely to become
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important, but for the moderate times studied here and in the three-dimensional

simulations it is reasonable to assume that a subharmonic length box is sufficient.

Figure 3.11 shows the evolution of the mean, fundamental, subharmonic, and

sub-subharmonic mode energies for the wake in figure 3.10. Comparing this figure

to the corresponding figure for the 346(0)g0_S wake (figure 3.7 on page 66) it is clear

that the sub-subha:monic disturbance remains at a very low energy late until in the

simulation. The sub-subharmonic has no noticeable impact on the evolution of the

energies of the shorter wavelength disturbances up until a time of approximately

= 150. After that time, the sub-subharmonic disturbance begins to slowly draw

energy from the (dominant) subharmonic mode. Even at the latest time simulated

the sub-subharmonic is beginning to grow rapidly at the expense of the subharmonic,

but is still much weaker than the subharmonic mode.

3.3.3 Effect of Reynolds Number

Figures 3.12, 3.13, 3.14, and 3.15 show contour plots of vorticity for sets of wakes

with the same initial disturbances at approximately the same time, but with different

Reynolds numbers. In general, varying the Reynolds number has minimal effect on the

large scale structure of the flow (given a high enough Reynolds number to allow the

initial rollup). The major differences between flows with different Reynolds numbers

has to do with the development of small scales.

At very low Reynolds numbers (figure 3.12a), viscosity dominates the wake to the

point that it never enters the nonlinear growth regime. At slightly higher Reynolds

numbers (figures 3.12b, 3.13a 3.14a, and 3.15a), the wake rolls up and non-linear

dynamics, including pairing of the rollers, are evident. The structures are still very

diffuse, however, and adjacent regions of opposite signed vorticity annihilate each

other quickly.

As the Reynolds number increases (figures 3.12c-f, 3.13b,c 3.14b,c, and 3.15b,c),

the decay of the intensity of the large vortical structures is significantly reduced

and much smaller vorticity scales begin to appear. These small scales are the result

of vorticM regions being wrapped and folded around the rollers and vorticity being

stretched in the high strain-rate regions between rollers. Without the strong diffusion
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Figure 3.12: Iso-vorticity contours for (?)(0)_ wakes (two-dimensional fundamental

with various Reynolds numbers). (a) Reb = 69, t = 200.7. (b) Reb = 119, t = 201.8.

(c) Reb = 346, t = 198.6. (d) Reb = 692, t = 201.3. (e) Reb = 1384, t = 197.8.

(f) Reb = 2768, t = 196.3. Contours are 0.01 _< [wl -< 0.4 in increments of 0.05.
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? X_XFigure 3.13: Iso-vorticity contours for (.)(0)oox wakes (two-dimensional fundamen-

tal plus subharmonic with various Reynolds numbers). (a) Reb = 119, _ = 194.6.

(b) Reb = 3461 t = 200.8. (c) Reb = 692, t = 199.1. (d) Reb = 1384, _ = 208.1.

Contours are 0.01 _< I_'[ _< 0.4 in increments of 0.05.
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(a) (b)

(c) (d)

Figure 3.14: Iso-vorticity contours for (.)(0)o_ wakes (two-dimensional fundamental

plus subharmonic at _ with various Reynolds numbers). (a) Reb = 119, t = 201.4.

(b) Reb = 346, t = 198.7. (c) Reb = 692, t = 193.4. (d) Reb = 1384, t = 195.2.

Contours are 0.01 _< -< o.4 in increments of 0.05. Arrow indicates rollup of

secondary shear layer.
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Figure 3.15: Iso-vorticity contours for (.)(0)0_, wakes (two-dimensional fundamental

plus subharmonic at _ with various Reynolds numbers). (a) Reb = 119, t = 205.3.

(b) Reb = 346, t = 196.0. (c) Reb = 692, t = 197.3. (d) Reb = 1384, t = 200.2.

Contours are 0.01 < Iwl < 0.4 in increments of 0.05.
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present in the wakes with lower Reynolds number, these fine structures do not get

smeared out or absorbed by the larger structures.

As the Reynolds number increases there is also an increase in the strength and

persistence of the vorticity in the fluid which has been convected across the wake

in pinching off events during rollup and pairing. These pockets of pinched off fluid

contain vorticity of the opposite sign as the rollers, adding significant complexity to

the overall wake structure.

For the cases with pairing, at the higher Reynolds numbers (figures 3.13c,d 3.14c,d,

and 3.15c,d) the post-pairing rollers show small scale internal structures (this is most

evident in figure 3.13d, where the bottom "roller" still consists of two separate struc-

tures). There is also evidence of the onset of secondary rollup of the small scale shear

layers which develop during the pairing process. The most obvious of these is in the

long thin structure at the top of figure 3.14d (see arrow).

3.3.4 Scalar Field

Figure 3.16 shows contours of enstrophy density and scalar concentration for three of

the wakes discussed above. Since the initial scalar field was set to the initial enstrophy

density field, it is reasonable to assume that contour plots of these quantities should

be similar in appearance. Any major differences are due to the fact that vorticity

can be canceled out by vorticity of the opposite sign whereas the scalar is a positive

quantity which is conserved.

It is clear from figure 3.16 that even at high Reynolds numbers where there is

complex structure to the wake, the scalar field and the enstrophy density field are

similar. Portions of the flow which have large enstrophy density tend to be regions

where vorticity of opposite signs is not present. These regions have matching large

values for the passive scalar. Regions of the flow with nonzero passive scalar con-

centrations but little enstrophy density correspond to once-vortical fluid which has

undergone cancellation.

The scalar concentration plots in figure 3.16 give a good estimate for the level

of entrainment of free-stream fluid by the various wakes. The wake in figure 3.16b

(1384(0)gg_) has entrained a large quantity of fluid from both the freestream above
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Figure 3.16: See caption page 80.
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/

(_) (f)

Figure 3.16: Comparison of iso-enstrophy density and iso-scalar contours for

1384(0)_(_x wakes (two-dimensional fundamental and subharmonic at various phases).

1384(0)0_0_, t = 208.1. (a) Enstrophy Density. (b) Passive scalar. 1384(0)_,

t = 195.2. (c) Enstrophy Density. (d) Passive scalar. 1384(0)_, t = 200.2. (e) En-

strophy Density. (f) Passive scalar. Contours are 0.05 _< [w[, C1 _< 0.4 in increments

of 0.05. Arrows indicate entrained fluid.
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and below the wake (see arrows). In contrast, the wake in figure 3.16f (1384(0)___%) has

entrained very little freestream fluid (only what has been convected in between the

periodic rollers on each side of the wake -- see arrows). The differences in entrainment

make a significant difference in the mixing which occurs in these wakes, and has a

strong impact on their relative growth rates.

3.4 Growth of the Mean Flow

In all of the simulations, the mean velocity profile is defined to be the average velocity

over the streamwise and spanwise directions for a given cross-stream position. The

("direct") wake halfwidth, b, is then calculated by finding the maximum mean velocity

for a given time in the simulation and taking half the width between outermost

crossings of the mean velocity profile with the half maximum velocity point.

Since many of the flows to be presented develop non-Gaussian mean profiles,

primarily due to the limited number of long wavelength modes available over which

to average, a second, integral measure will also be presented. This integral halfwidth,

bi, is defined as

(S:: (3.3)

where Au is the mean (streamwise) velocity defect profile. The integral halfwidth bl

has been formulated such that for a Gaussian velocity defect profile b,_= b. Since the

initial velocity profiles are all Gaussian, b,(t = O) = bo = 1.0.

3.4.1 Effect of Disturbance Wavelength

Similarity arguments applied to the temporally developing plane wake, where the

momentum per unit streamwise length is assumed to be the only important governing

parameter, lead to the conclusion that the far wake should grow asymptotically like

t½. Therefore it is convenient to use plots of the square of the wake halfwidth, b2 or

by, versus time, t, to study the growth of the mean flow. In these coordinates, b ,,_ t½

or b, ,v t} growth will appear as a straight line.
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Figure 3.17: Square of normalized wake halfwidth versus normalized time for Re =

346 wakes with various disturbance wavelengths, o: 346(0)_. ©: 346(0)_o_. rn:

346(0)_o_. (a) Direct halfwidth, b. (b) Integral halfwidth b,.
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As a reference, the streamwise fundamental wavelength, as calculated from linear

stability theory, is L I = 7.85. The halfwidth b is therefore equal to the halflength of

the computational domain when b2 = 15.4 for the fundamental only case, b2 = 61.7 for

the cases with subharmonic disturbances, and b2 = 246.7 for the cases with sub-sub-

harmonic disturbances. When b2 approaches these values it is likely that the stream-

wise confinement imposed by the computational box will be become very significant.

(Note: these values will also hold for the later three-dimensional computations).

Figure 3.17 shows plots of the square of the wake halfwidths versus time for

three wakes with Reb = 346 started from initial fields containing a fundamental,

a fundamental and a subharmonic, and a fundamental, a subharmonic, and a sub-

subharmonic respectively. The circles correspond to the simulation that appears in

figure 3.2 (346(0)_), the diamonds to the simulation in figure 3.4 (346(0)_0_), and

the squares to the simulation in figure 3.10 (346(0)_0_).

As discussed above, the wakes go through three distinct stages of evolution. Up

to a time of approximately t = 30, which is the linear growth regime, the flow is

laminar with exponentially growing sinusoidal disturbances. After a time of t = 30;

the flow enters a nonlinear growth regime where the fundamental disturbance grows

rapidly and the wake spreads quickly. At a time of approximately t = 50 the wake

width peaks as the fundamental begins to saturate and the vorticity field rolls up to

form the Kdrm_in vortex street. As the vortex street forms, the rollers relax slightly

toward the wake centerline and the wake halfwidth drops.

Up to a time of t = 90, the growth of the wakes shown (and indeed all of the two-

dimensional wakes studied) is clearly dominated by the evolution of the fundamental

disturbance. After a time of t = 100, however, the longer wavelength disturbances

become important. After t = 100, the simulation with only the fundamental distur-

bance (346(0)_) settles down to a uniform vortex street which spreads only slowly

through viscous diffusion. The small oscillations in wake width at late time are due to

the vortices positioning themselves into an asymptotically stable configuration, and

are therefore less pronounced in the plot of the integral halfwidth.
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The sharp increase in wake width at a time of t = 105 for the simulations with the

longer wavelength (subharmonic, 346(0)_o_, and sub-subharmonic, 346(0)g0%") distur-

bances corresponds to the growth of the subharmonic disturbance, which results in

the initial pairing of the vortices on the bottom side of the wake (figures 3.4c,d). The

wake width then peaks as the bottom rollers finish pairing and force one of the top

rollers upwards (figures 3.4e). As the wake approaches a subharmonic vortex street

configuration the rollers again settle back toward the centerline and the wake width

decreases.

There is very little difference in the evolution of the wake with only the subhar-

monic and the wake with the addition of a sub-subharmonic disturbance. Up to the

time simulated, the sub-subharmonic does not play a significant role. For a very long

simulation, however, it is reasonable to expect that the sub-subharmonic would even-

tually lead to a second pairing of the vortex street. The effect of the sub-subharmonic

are more evident in the plots of the integral halfwidth at late times, but the difference

is still not significant.

3.4.2 Effect of Disturbance Phase

Figure 3.18 shows plots of the wake halfwidths versus time for the three simulations

with Reb = 346 which were initiated with a fundamental and a subharmonic distur-

bance. These are the same wakes that appear in the vorticity contour plots in figures

3.4, 3.5, and 3.6. As one would expect after examining the vorticity contour plots, the

phasing of the subharmonic has a very strong impact on the evolution of the mean

width.

The two wakes with subharmonic phasing such that the rollers pair on one side and

then capture a roller from the other side (346(0)go_ and 346(0)_]__:) have significantly

greater maximum widths than the wake that pairs on both sides simultaneously. The

point of maximum width for all of the wakes occurs in the middle of the pairing

process, before the original rollers have fully combined. In the wakes that pair only

on one side, the pairing process pushes one of the rollers on the other side of the wake

away from the centerline. This serves to sharply increase the mean halfwidth of the

wake. After the pairing rollers have completed their agglomeration, the roller that



CHAPTER 3. TWO-DIMENSIONAL SIMULATIONS 85

t",l
<

30

20-

10-

• _0ooooooO°'°

1 i i

0 100 200 300

(a)

400

30

t"-I
<

°_

20-

i

0 100 200 300

t

(6)

400

Figure 3.18: Square of normalized wake halfwidth versus normalized time for

346(0)g(%_, wakes (two-dimensional fundamental and subharmonic at various phases).

o: 346(0)_0_. ©: 346(0)___. 0: 346(0)___. (a) Direct halfwidth b. (b) Integral

halfwidth hi.
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was pushed out is drawn back toward the centerline, decreasing the halfwidth again.

In the wake which pairs on both sides simultaneously, the rollers on both sides of the

wake stay close to the centerline, and the width peaks only slightly.

3.4.3 Effect of Reynolds Number

Figures 3.19, 3.20, 3.21, and 3.22 show plots of the square of the halfwidths versus time

for wakes with identical initial disturbances but with different Reynolds numbers. The

wake with the lowest Reynolds number shown is 69(0)_ (open diamonds in figure

3.19). At this Reynolds number, the wake never rolls up. Although there is some

nonlinear growth of the disturbances at early times (as evidenced by the small hump

in the growth curves), the growth of this wake is due almost entirely to (rather rapid)

viscous diffusion.

At a somewhat higher Reynolds number (119(0)_, 119(0)g0_, 119(0)___, and

119(0)_)___, all shown as open squares in figures 3.19, 3.20, 3.21, and 3.22), the wakes

roll up to form vortex streets. Although pairing does occur where a suhharmonic

disturbance is present, the late time growth of all the wakes quickly become dominated

by diffusion.

As the Reynolds number increases further, some measure of Reynolds number

independence begins to appear in the growth of the mean flow. This is particularly

¢_ XX2?true for the (.)(0)0_x wakes (figure 3.19). The growth curves for the Reb ---- 346,

692, 1384, and 2768 wakes lie almost exactly atop one another. The only noticeable

difference is that the initial wake rollup occurs slightly earlier at higher Reynolds

numbers.

For the wakes that undergo pairing (figures 3.20, 3.21, and 3.22) the case for

Reynolds number independence is somewhat weaker. The growth seems to be inde-

pendent of Reynolds number up to approximately midway through the pairing of the

rollers, at a point where the rollers are still recognizable as separate structures. Be-

yond this point the growth of the halfwidth appears to become dependent on viscosity

again.

A large part of the variation in the "direct" halfwidth b, as compared to the integral

halfwidth b,, is due to the sensitivity of the measure to the shape of the mean velocity
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Figure 3.19: Square of normalized wake halfwidth versus normalized time for (.) (0)o_x

wakes (two-dimensional fundamental with various Reynolds numbers). ©: 69(0)o_.

D: 119(0)o=_. o: 346(0)o=_. /k. 692(0)0==. V: 1384(0)o._. x: 2768(0)o=_. (a) Direct

halfwidth b. (b) Integral halfwidth bi.
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wakes (two-dimensional fundamental and subharmonic with various Reynolds num-
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b. (b) Integral halfwidth b,.
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Figure 3.21: Square of normalized wake halfwidth versus normalized time for (.)(0)0_

wakes (two-dimensional fundamental and subharmonic at _ with various Reynolds

numbers). 13: 119(0)_. o: 346(0)g___. A: 692(0)_. V: 1384(0)_. (a)Direct

halfwidth b. (b) Integral halfwidth b,.
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Figure 3.22: Square of normalized wake halfwidth versus normalized time for (.)(0)o_x

wakes (two-dimensional fundamental and subharmonic at _ with various Reynolds

numbers). D: 119(0)___. o: 346(0)___. /X: 692(0)___. V: 1384(0)_g_. (a)Direct

halfwidth b. (b) Integral halfwidth bi.
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Figure 3.23: Comparison of mean velocity profiles for (692>(0)_0_ and (1384>(0)_0_

wakes (two-dimensional fundamental and subharmonic at 0). /k: 692(0)_0_, t = 199.1.

V: 1384(0)_, t = 208.1. (Symbols correspond to those in figure 3.20). Arrows

indicate locations for measurement of "direct" halfwidths.

profile. The "direct" halfwidth is simply taken as half the width between the two

outermost points where the mean streamwise velocity is at the half maximum velocity

defect level. If the mean defect velocity profile is non-Gaussian, and in particular if

it has "shoulders" or multiple peaks, then large variations in the measured halfwidth

can appear between fiow_ ::,_t look very similar in terms of vorticity distribution.

This is an inherent shortcoming of the "direct" halfwidth measure b which becomes

particularly acute in cases such as this where the mean profiles can be far from

Gaussian.

This is illustrated by figure 3.23, which shows mean streamwise velocity profiles

for the simulations that are presented in figures 3.13c and 3.13d. The vorticity fields

of these flows appear very similar, but due to the way the large scale structures

have arranged themselves, they produce very different mean profiles. At the lower

Reynolds number, the rollers are more scattered and diffuse, which results in a broad,

flattened mean velocity profile. At the higher Reynolds number, however, the fact
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that the rollers are compact, and that the top roller has been pulled further toward

the bottom of the wake produces a mean profile with a narrow, intense peak. Though

the vorticity in both wakes has spread out over approximately the same spanwise

extent (which is another possible measure of the width), the "direct" halfwidth b

(arrows) is very different between the two cases.

As noted above, the difference in the integral halfwidth, b,, is much smaller than

for the "direct" halfwidth b. There is, however, still a significant difference in the

widths of the 692(0)_ and 1384(0)_ wakes (/k and V in figure 3.20b respectively).

The higher Reynolds number 1384(0)_ wake is significantly more compact than

the lower Reynolds number flows. This is due to the fact that at this particular

subharmonic phasing, one side the wake develops a single region of concentrated

vorticity, while the vorticity in the other side of the wake remains in two weaker

regions. The difference in the relative strength of the regions of vorticity that form

allow the single strong region to capture one of both of the weaker regions from the

opposite side of the wake. At the highest Reynolds number shown, 1384(0)_, the

very strong concentrated vorticity region at the bottom of the wake captures both

of the weaker vorticity concentrations at the top of the wake, resulting in a very

compact configuration. At the lower Reynolds numbers shown just one of the upper

vorticity concentrations is captured, resulting in a wider wake (see figure 3.13 on

page 75). In contrast, the other two subharmonic phasings examined result in wakes

in which the vorticity concentrations that develop on opposite sides of the wake are

more balanced in strength. Neither side of the wake can capture all of the significant

vorticity concentrations from the other side of the wake, independent of the wake

Reynolds number (see figures 3.14 and 3.15 on pages 76 and 77).



Chapter 4

Three-dimensional Simulations

4.1 Motivation

To explore the effects of initial conditions on the development of the three-dimen-

sional incompressible plane wake, a set of three-dimensional simulations has been run

using various initial conditions. The effects of disturbance wavelength, phasing, and

wake Reynolds number are examined in this section.

4.2 Simulation Parameters

4.2.1 Three-dimensional Forcing

As discussed in section 2.7, the initial conditions for the three-dimensional simulations

were composed of a Gaussian mean streamwise velocity profile with sets of small am-

plitude periodic disturbances superimposed. Simulations were performed at Reynolds

numbers based on initial halfwidth and defect velocity of between 69 and 2768. The

majority of wakes simulated were at a Reynolds number of Reb = 346. Based on the

results of the two-dimensional simulations presented in chapter 3, this should be a

sufficiently high Reynolds number to capture the main effects of the variety of initial

disturbances on the large scale development of the wake. Simulations at the highest

Reynolds numbers, which are much more computationally demanding, were run for

93
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only a few select sets of initial disturbances in order to examine the transition to

turbulence. Table H.2 in appendix H gives a summary of all of the three-dimensional

simulations that have been performed.

4.3 Structural Development of the Three-dimen-

sional Wake

Figure 4.1 shows perspective views of three-dimensional iso-enstrophy density con-

tours at four times in the development of the x0x346(60)0xx wake (two-dimensional fun-

damental disturbance and a pair of 60 ° oblique disturbances at the subharmonic

wavelength). The freestream flow direction is from left to right. The contour level

was chosen to be IaJI = 0.4. This corresponds to approximately 60% of the initial

mean wake defect velocity divided by the initial wake halfwidth, which serves as a

rough measure of the mean gradient in the initial flow.

The development of this wake is typical of the wakes initiated with a two-dim-

ensional fundamental disturbance and a pair of 60 ° oblique disturbances at the sub-

harmonic wavelength. The initial development is primarily two-dimensional, with

the fundamental (K£rm_n) mode growing most quickly as predicted by linear theory.

The flow develops well defined spanwise rollers with relatively weak streamwise struc-

tures stretching between rollers on the same side of the wake (figure 4.1b). Once the

rollers are established, the three dimensional disturbances grow rapidly in strength

under the influence of the resulting straining field. (figure 4.1b,c). As the stream-

wise structures become more intense, they begin to distort the rollers, breaking up

their spanwise coherence (figure 4.1c). Eventually, the streamwise structures, both

the original structures and ones which are the result of the distortion of the spanwise

rollers, become the dominant features in the flow (figure 4.1d). Note that as the wake

spreads with time, the maximum vorticity due to the mean flow drops, so the mag-

nitude of a fixed level of vorticity relative to the gradients of the mean flow becomes

substantially larger. The structures which appear in figure 4.1d are at an intensity

level far above the vorticity due to the mean shear. Compared to the contour level of
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(a)

(b)

Figure 4.1: See caption page 97.
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(c)

Figure 4.1: See caption page 97.
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¢

C

(d)

• 346(60)o_: x wake (two-dimensionalFigure 4.1 Iso-enstrophy density contour for _0_

fundamental plus three-dimensional subharmonic). Contour level is [a.,I = 0.4.

(a) t = 22.8. (b) t = 52.8. (c) t = 102.7. (d) t = 204.8.
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346(60)o.x wake (two-dimensional fun-Figure 4.2: Iso-enstrophy density contour for 0x_

damental plus three-dimensional fundamental), t = 196.9. Contour level is twl = 0.2.

Iwl = 0.4 shown, the mean shear at that late time, based on halfwidth and maximum

defect velocity, is 0.037, more than an order of magnitude lower.

4.3.1 Effect of Disturbance Wavelength

In stark contrast to the wake shown in figure 4.1 is the wake shown in figure 4.2. This

is the 0,_346(60)0,, wake (which has a two-dimensional fundamental disturbance and a

pair of oblique disturbances at the fundamental wavelength). The contour level here

is 0.2, half the level used in figure 4.1. With these initial conditions, strong three-

dimensionality fails to develop even by the advanced time shown. The streamwise

structures are present (the dominant ones can be seen running between rollers on

the bottom side of the wake at this disturbance phasing), but exist as broad fiat

regions of vorticity, canted to the plane of the wake, as opposed to the intense tube-

like structures which appear in the 346(60)_ wake. The relatively low circulation

of these weak streamwise structures is evidenced by their minimal impact on the

spanwise rollers. The rollers in the wake in figure 4.2 are only slightly corrugated,
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346(60)oxx wake (figure 4.1d), the spanwisewhereas at the corresponding time for the z0x

rollers have been entirely overwhelmed by the streamwise structures.

The effects of the addition of longer wavelength disturbances are illustrated by the

346(60)00x sim-wakes in figures 4.3, 4.5, and 4.7. Figure 4.3 shows the results from the 0_:_

ulation. This wake was started from initial conditions similar to those used in figure

4.2, but with the addition of a two-dimensional subharmonic disturbance. Again, the

evolution is dominated by two-dimensional dynamics, even at the late time (t = 202.8)

shown. As in the corresponding two-dimensional wake (figure 3.4), the two bottom

rollers have paired to form one coherent roller, captured one of the top rollers, and

drawn it down to the bottom of the wake. Although the three-dimensional structures

4 0_are stronger than those found in the 3 6(60)0_ simulation, and have a tube-like shape

as opposed to a flat shape, they are still substantially weaker than those found in the

:r0x346(60)oxx simulation. The effect of the moderate strength streamwise structures is

to break up the spanwise coherence of the captured roller, with little impact on the

other two (primary) rollers.

The essential two-dimensionality of this flow is reinforced by the plot in figure

4.4. This figure shows a comparison of the evolution of the first few streamwise

346(60)0o_ (symbols)(two-dimensional) mode energies for the three-dimensional wake o_

and the corresponding two-dimensional wake 346(60)_ (lines). Up to a time of

approximately t = 150 there is no significant difference in the development of the

mean, two-dimensional fundamental or subharmonic mode energies between the two-

dimensional and three-dimensional wake. Even at very late times the differences are

relatively small. The subharmonic mode energy for the three-dimensional wake is

somewhat lower due to energy being transferred into the three-dimensional modes,

but the wake dynamics are still essentially those of a two-dimensional wake.

346(60)oo_ simulation,Figure 4.5 shows an iso-enstrophy density contour for the _0_

where a two-dimensional subharmonic has been added to the initial disturbance field.

Note that the contour level shown is again Iw[ = 0.4. The addition of a two-dimen-

sional subharmonic disturbance does not have a major impact on the development

346(60)0x, simulation in figure 4.1.of the streamwise structures as compared to the ,o_

Similar primary streamwise structures exist in both flows, running between rollers
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Figure 4.3: Iso-enstrophy density contour for 346(60)_ wake (two-dimensional fun-

damental and subharmonic plus three-dimensional fundamental), t = 202.8. Contour

level is [_[ = 0.2.
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..... , D: Subharmonic mode energy.

on the same side of the wake. The main effect of the two-dimensional subharmonic

disturbance is on the spacing of the rollers, causing the two bottom rollers and one of

the top rollers to cluster into a tight group and begin to pair as was observed in the

corresponding two-dimensional wake in figure 3.4d and the weakly three-dimensional

wake in figure 4.3. In this wake, however, the strong streamwise structures inhibit

the pairing process by distorting the rollers.

This is more easily seen by examining the evolution of the streamwise mode ener-

gies. Figure 4.6 shows a comparison of the disturbance energies for the two-dimension-

_ 346(60)00_ wake (symbols). Noteal 346(60)o0_ wake (lines) and the three-dimensional ,o,

that both the fundamental and subharmonic disturbances in the three-dimensional

wake peak earlier and at a lower energy than in the corresponding two-dimensional

wake. Furthermore, the late time energy of the subharmonic disturbance is signifi-

cantly lower in the three-dimensional wake. This is a result of the three-dimensional

motions drawing energy out of the long wavelength two-dimensional modes.
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Figure 4.5: Iso-enstrophy density contour for xox346(60)o0x wake (two-dimensional fun-

damental and subharmonic plus three-dimensional subharmonic), t = 96,7. Contour

level is [.;[ = 0.4.
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Figure 4.7: Iso-enstrophy density contour for 346(60)g °g wake (two-dimensional fun-

damental, subharmonic, and sub-subharmonic plus three-dimensional subharmonic

and sub-subharmonic), t = 103.2. Contour level is I_1= 0.4.
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Figure 4.7 shows iso-enstrophy density contours for the 346(60)_ wake, which

has the longest wavelength disturbances studied. Note that the streamwise extent of

the field shown in figure 4.7 is twice that of the fields in the previous figures (four

fundamental wavelengths long instead of two). The effect of the additional two-dim-

ensional sub-subharmonic disturbance is rather minimal up to the time shown. It has

caused the sets of paired rollers to be offset slightly in the cross-stream direction, but

there is no indication that a second pairing is likely. This conclusion is supported

by figure 4.8 which shows the evolution of the energies of the first few streamwise

disturbance modes. Note that the sub-subharmonic disturbance (dotted line) is the

weakest of the disturbance modes shows, and is decaying rapidly at late times. Since

the sub-subharmonic mode is required for a second pairing to occur, such a paring is

impossible in the time frame observed.

At late times the the spanwise structures are very similar to the structures in the

wake in figure 4.5. The effect the addition of the oblique sub-subharmonic disturbance

is to impart a spanwise variation in the strengths of both the streamwise structures
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Figure 4.9: Iso-enstrophy density contour for 346(60)o** wake (two-dimensional fun-

damental plus three-dimensional subharmonic at _). t = 96.5. Contour level is

I 'L=0.4

and the spanwise rollers. This small increase in the complexity of the overall flow has

little impact on the development of the wake.

4.3.2 Effect of Disturbance Phase

Figures 4.9, 4.10, 4.11, and 4.12 illustrate the effects of phasing of the oblique distur-

bance on the structure of the three-dimensional wakes discussed above. The general

effect is to decrease the strength of the streamwise structures on one side of the wake

and increase the strength of the streamwise structures on the other. For the wakes

initiated with an oblique disturbance at the fundamental wavelength (figures 4.10 and

4.2, and figures 4.11 and 4.3) this results in the already weak streamwise structures

on the bottom of the wake dropping in intensity below the contour level shown in

favor of streamwise structures on the top of the wake, which remain too weak to
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Figure 4.10: Iso-enstrophy density contour for 346(60)0_ " wake two-dimensional

fundamental plus three-dimensional fundamental at i)" t = 197.0. Contour level is

I' 1 -- 0.2.

appear. For the wakes initiated with a oblique disturbance at the subharmonic wave-

length (figures 4.9 and 4.1, and figures 4.12 and 4.5) this results in a balancing of the

strengths of the streamwise structures, which previously favored the top of the wake.

4.3.3 Effect of Reynolds Number

Figure 4.13 shows a series of iso-enstrophy density contours for (?) _0x(60)0_ wakes all

at approximately the same time, but with progressively increasing Reynolds number.

Note that as the Reynolds number increases, the contour level shown also increases.

Even at a rather low Reynolds number (the 1 x0_19(60)0x_ wake in figure 4.13a),

the streamwise structures which arise from the oblique subharmonic disturbance are

quite strong and dynamically important. Though they do not overwhelm the spanwise

rollers, they do distort the rollers significantly.

As the Reynolds number increases, the relative strengths of the streamwise struc-

tures also increase, the spanwise rollers become more distorted, and finer flow scales

appear. Even in the highest Reynolds number wake simulated (the _0_2768(60)0_ wake

in figure 4.13e), the influence of the oblique subharmonic is apparent. Very intense
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Figure 4.11: Iso-enstrophy density contour for 346(60)_) _ wake (two-dimensional

fundamental and subharmonic plus three-dimensional fundamental at _)2. t = 192.6.

Contour level is = 0.2.
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Figure 4.12: Iso-enstrophy density contour for 346(60)0o_ * wake (two-dimensional

fundamental and subharmonic plus three-dimensional subharmonic at _). t = 97.3.
Contour level is I._l = 0.4.
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(_)

(b)

Figure 4.13: See caption page 111.
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(c)

(d)

Figure 4.13: See caption page 111.
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(e)

Figure 4.13: Iso-enstrophy density contours for (?) _o.(60)oz. wakes (two-dimension-

al fundamental plus three-dimensional subharmonic) at various Reynolds numbers.
(a) l _o_19(60)o_, t = 97.9. Iwl 0.2. (b) _o_= 346(60)o_, t = 102.7. Iw I = 0.4.

692(60)o. _, t = 101.2. Iwl 0.8. (d) .o.= 1384(60)o_, t = 101.5. Iw I = 1.6.
(e) 2768(60)_o_, t = 102.4. I_l = 2.4.
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• 1384(60)0¢= wake (two-dimensionalFigure 4.14 Iso-enstrophy density contour for 0==

fundamental plus three-dimensional fundamental). _ = 100.2. Contour level is [,,'[ =

0.2.

fine scale motions occur at locations where the coherent streamwise structures appear

in the lower Reynolds number flows• This is an indication that the generation of smal]

scales in the wake is linked the very intense straining fields created by the streamwise

structures•

Though the early development of all the wakes calculated is similar, the devel-

opment of significant strong three-dimensionality does not occur in the absence of

the oblique subharmonic. Figure 4.14 shows an iso-enstrophy density contour for

the o==1384(60)0== wake. The streamwise structures are evident, and, as evidenced by

the visible corrugation in the spanwise rollers, have a somewhat greater impact on

the flow dynamics than in the corresponding lower Reynolds number (?) 0_=(60)0=_ wake

presented previously. However, the three-dimensional motions are still very weak,
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and the wake remains nearly two dimensional. Similar results are found for computa-

tions started from the same set of initial disturbances, but with different disturbance

phasings.

This result differs markedly from the compressible wake computed by Chen et

al. [10], which showed strong three-dimensional development for certain disturbance

phases and only weak three-dimensional development for others. It is unclear why

this difference exists. Chen et al. attributed the sensitivity to three-dimension-

al disturbance phase in the compressible wake to the fact that at certain phasings

significant amounts of vorticity from the three-dimensional mode resides in the high

strain-rate regions between the spanwise rollers where it can be amplified through

stretching. Other phases are such that most of the vorticity from the three-dimen-

sional mode gets wrapped into the relative low strain-rate rollers, where it is only

weakly amplified. If this were the only process occurring the same results should hold

for the incompressible wake. A more careful comparison of the respective datasets

needs to made before the reason for the observed difference can be determined.

At this point it is prudent to check that the wake simulations presented, particu-

larly the simulations of the higher Reynolds number wakes, are well resolved. To do

this it should be sufficient to demonstrate that the most extreme case, the Reb = 2768

wake, is adequately resolved. This was accomplished by calculating the Taylor mi-

croscales as was done for the test case in section 2.8.3 (see appendix A for definitions

of the microscales used). Analysis of the _ox2768(60)o,x wake yielded a minimum (as a

function of x_) Taylor microscales of Ar = 0.26 and AT_ = 0.35 respectively. The least

well resolved d3rection in this flow is the cross-stream, with a grid size of Az2 = 0.085

which translates to over three grid cells per microscale length. This resolution is

adequate.

This conclusion is reinforced by by examining the energy spectra of the simulated

wakes. Figure 4.15a shows the energy spectra for the ,o_346(60)0,_ wake and figure

4.15b shows the energy spectra for the _0_ _,0:_2768(60)0,, wake. The 2768(60)0_, _ wake is

the most demanding of the simulations performed. Since the spectra of both wakes

show large, clean dropoff of their spectra at high wavenumbers it is clear that both

simulations are sufficiently resolved.
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4.4 Growth of the Mean Flow

Wygnanski, Champagne, & Marasli [58] (hereafter referred to as WCM) studied a

set of small defect turbulent plane wakes created with a variety of wake generators.

The generators were carefully designed such that the momentum thickness, _0, was

constant for all of the experiments. The Reynolds number for the various wakes they

studied, based on freestream velocity and momentum thickness, ranged between 640

and 3220 (which, assuming a Gaussian mean initial profile, corresponds to Reynolds

numbers based on wake halfwidth and centerline velocity of between Reb = 589 and

Reb = 2962, the high end of the computational range studied here.) The), found that

the far wake growth rates followed

b) z-:Co

where x is the streamwise coordinate and x0 is a virtual origin. The coefficient A0

was found to vary depending on the particular wake generator used. The limiting

values for A0 that the3' observed were 0.270 for a solid strip set perpendicular to the

flow direction, and 0.382 for a flat plate with a trailing edge flap which was oscillated

at the frequency of the Kirmg.n mode.

In order to compare with these experiments, straight dotted lines indicating the

upper and lower bounds for the growth rates observed by WCM will be plotted

in the following figures. These lines have been transformed into the appropriate

computational variables using x - x0 = Uo(t - to). Note that these lines have not

been shifted to account for the virtual origins for the various flows. Only the slopes

of the lines are significant.

4.4.1 Effect of Disturbance Wavelength

Figure 4.16 shows comparisons of the square of the wake halfwidths, b2 and b], versus

non-dimensional time, t, for computations with a Reynolds number of Reb = 346

and various combinations of initial disturbances. All the disturbance phases are zero.

Up to a time of approximately t = 70, the growth rate of all the wakes shown is
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Figure 4.16: Square of normalized wake halfwidth versus normalized time for Re =

346 wakes with various combinations of initial disturbance wavelengths, o: 346(60)o_.<_: 34 _o.6(60)o... D: o_. _o. _,oo346(60)00.. A: 346(60)00.. V: 346(60)ooo. (a) Direct halfwidth b.
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dominated by the initial two-dimensional development of the Kirmdn vortex street.

The presence of disturbances other than the two-dimensional fundamental has little

impact.

Between a time of t = 70 and t = 200 the growth rate becomes highly dependent

on the particular choice of initial disturbance. The most significant factor is the

existence of a two-dimensional subharmonic disturbance. The wakes with the two-

dimensional subharmonic o_ _ox346(60)00_ , 346(60)_g °) undergo a period(346(60)0ox, and

of rapid spreading around a time of t = 100 which corresponds to the pairing of

the spanwise rollers, while the wakes with only the two-dimensional fundamental

disturbance grow more slowly.

The late time growth rate, after a time of approximately t = 200 is determined by

the wavelengths of the oblique disturbances. The wakes initiated with a subharmonic

oblique disturbance, which develop strong three-dimensional motions, maintain a

growth rate similar to the upper range observed by WCM. The wakes initiated with

only a fundamental wavelength oblique disturbance, which are dominated by two-

dimensional dynamics, have a late time growth rate well below the experimentally

observed level. The late time growth of these wakes is primarily due to the viscous

diffusion of the coherent vortex street.

4.4.2 Effect of Disturbance Phasing

Figure 4.17 shows plots of the square of the wake halfwidths versus non-dimensional

time for a set of three-dimensional simulation runs started from the 346(60)_0_)[ x dis-

turbance condition (a two-dimensional fundamental and a three-dimensional oblique

fundamental at 60 °) overlayed on the results from the corresponding two-dimensional

simulation (346(0)_). It is readily apparent that the growth of these wakes is dom-

inated by two-dimensional dynamics. This is not surprising given the fact that, as

discussed previously, this choice of initial disturbances does not lead to development

of strong three-dimensionality. As a result, the phase of the oblique dist_.: bance has

no significant effect on the growth of the mean flow. The late time growth rates for

these wakes fall well below the levels observed by WCM.
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Figure 4.17: Square of normalized wake halfwidth versus normalized time for

346(60)o_;_ wakes (two-dimensional fundamental plus three-dimensional fundamen-
o_ _'_ _tal at various phases), o: 346(60)0=. 0: 346(60)o_. c_: 346(60)o_. _: Cor-

responding two-dimensional wake, 346(0)_. (a) Direct halfwidth b. (b) Integral
halfwidth b,.
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Figure 4.18: Square of normalized wake halfwidth versus normalized time for

346(60)_)_ *_ wakes (two-dimensional fundamental and two-dimensional subharmonic
O_x _-zz

plus three-dimensional fundamental at various phases), o: 346(60)oo_. ©: 346(60)oo..

[]: 346(60)j0_ x. _: Corresponding two-dimensional wake, 346(0)_0_. (a) Direct

halfwidth b. (b) Integral halfwidth b,.
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Figure 4.19: Square of normalized wake halfwidth versus normalized time for

346(60)(o:_; _ wakes (two-dimensional fundamental and two-dimensional subharmonic
_r Ox_r

at _ plus three-dimensional fundamental at various phases), o: 346(60)o_.. ©:

346(60)j___2.o: 346(60)o_. _. Corresponding two-dimensional wake, 346(0)o_,.
(a) Direct halfwidth b. (b) Integral halfwidth hi.
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Figure 4.20: Square of normalized wake halfwidth versus normalized time for

346(60)__x wakes (two-dimensional fundamental and two-dimensional subharmonic
r, Ox:r

at 7 plus three-dimensional fundamental at various phases), o: 346(60)o_,. O:

_= 9= ,=
346(60)o_. D: 346(60)o_,. --: Corresponding two-dimensional wake, 346(0)o_.

(a) Direct halfwidth b. (b) Integral halfwidth b,.
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Figures 4.18, 4.19, and 4.20 show plots of the square of the wake halfwidths versus

non-dimensional time for a set of three-dimensional simulation runs started from the

(?)xx
346(60)0(?)_ disturbance condition (a two-dimensional fundamental, a two-dimension-

al subharmonic, and a three-dimensional oblique fundamental at 60°). Here again

the flow is dynamically two-dimensional and therefore the growth of the mean flow

is very insensitive to the phasing of the three-dimensional fundamental disturbance.

The phasing of the two-dimensional subharmonic determines the development of the

mean flow almost entirely. The small deviations from the corresponding two-dimen-

sional wakes at late times are due to the (relatively weak) three-dimensional structures

which develop during the pairing of the spanwise rollers. However, these structures

never dominate the flow dynamics. Again the late time growth of these flows is well

below the range observed by WCM.

Figure 4.21 shows plots of the square of the wake halfwidths versus non-dimension-

x(,)_
at time for a set of three-dimensional simulation runs started from the 346(60)0x_; dis-

turbance condition (a two-dimensional fundamental and a three-dimensional oblique

subharmonic at 60 °). In contrast to the wakes with oblique disturbances at the fun-

damental wavelength, the late time growth of these wakes is substantially different

from the corresponding two-dimensional case. The initial growth is still dominated

by two-dimensional dynamics, but by a time of t = 125 three-dimensional processes

clearly begin to take over, as evidenced by the substantial deviation from the two-

dimensional growth curve.

The effect of the phasing of the three-dimensional subharmonic on either halfwidth

measure is minimal up to a time of ¢ = 200. After a time of t = 200, however, the

"direct" halfwidth measure shows what appears to be a strong phase dependence, the

apparent dependence on phase is due to the fact that the mean flow profiles for these

wakes are highly non-Gaussian, with several local maxima. The oblique disturbance

phase has an impact on the details of the shape of the mean profile, as well as an

effect on the maximum mean velocity. This has a large impact on the calculation

of the "direct" halfwidth, b, even though the vorticity in the flows has spread over

a similar extent. This is illustrated by the mean ul velocity profiles shown in figure

4.22. which correspond to the o and o lines in figure 4.21 at a time of approximately
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Figure 4.21: Square of normalized wake halfwidth versus normalized time for
x(_)x

346( 60 )o_:_ wakes (two-dimensional fundamental plus three-dimensional subharmonic

at various phases), o: 346(60)oxx. _: 346(60)o_. D: 346(60)o_. --. Cor-

responding two-dimensional wake, 346(0)_. (a) Direct halfwidth b. (b) Integral

halfwidth hi.
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Figure 4.22: Mean velocity profiles for _0x x_=_346(60)0xx and 346(60)o_x wakes. --:
:cOx x _ x

692(60)0_, t = 288.2. ----: 692(60)0x_, t = 292.1. Arrows indicate locations for
measurement of "direct" halfwidths.

t = 300. The relative small differences in profile height and shape lead to a large

difference in "direct" halfwidth b (see arrows).

The actual effect of disturbance phase is relatively small as can be concluded

from the plot of the integral halfwidth hi. What is most significant is that the late

time growth rates for all of these wakes are similar and within the range observed by

WCM. The presence of a three-dimensional subharmonic allows growth that is in line

with natural wakes. This does not occur in the wakes that have a three-dimensional

fundamental only.

Figures 4.23, 4.24, and 4.25 show the square of halfwidths versus time for the
x(?)x

346(60)o<?)x wakes. Again, the oblique disturbance phasing has only a small impact

on the growth of the mean flow. Though the magnitude of the late time width varies

somewhat with the phasing of the oblique disturbances, the growth rate is not signifi-

cantly impacted. Note also that so long as a three-dimensional subharmonic is present,

the late time growth rate of the three-dimensional wakes varies little with the phase of
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Figure 4.23: Square of normalized wake halfwidth versus normalized time for
z(,Ix346(60)oG wakes (two-dimensional fundamental and two-dimensional subharmonic

xO.r
plus three-dimensional subharmonic at various phases), o: 346(60)oox. _:

346(60)oo_ . _: 346(60)oo_ . _'Corresponding two-dimensional wake, 346(0)00,.

(a) Direct halfwidth b. (b) Integral halfwidth b_.
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Figure 4.24: Square of normalized wake halfwidth versus normalized time for

346(60)o_')_ x wakes (two-dimensional fundamental and two-dimensional suUharmonic

at } plus three-dimensional subharmonic at various phases), o: 346(60)g°_. O:

346(60)0_:. D: 346(60)0_.. --. Corresponding two-dimensional wake, 346(0)0_..

(a) Direct halfwidth b. (b) Integral halfwidth bi.
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the two-dimensional subharmonic disturbance, or for that matter, with the presence
_(,)x

or absence of the two-dimensional subharmonic (compare with the 346(60)0_;: wakes

in figure 4.21"). The late time growth rates are again similar, though in some cases

slightly above, the bounds observed by WCM.

4.4.3 Effect of Reynolds Number

Figure 4.26 shows a comparison of the square of the wake "direct" halfwidth versus

time for a set of computations all initiated with the (?) x0_(60)0_ disturbance condition,

but at different Reynolds numbers. Figure 4.27 are similar plots of the integral

halfwidth. At early times (figure 4.26b and 4.27b), the low Reynolds number wake

rolls up more slowly and peaks in width later than the other wakes. This is due to

viscous effects. The _0_346(60)0_ wake shows a similar, though much less pronounced

effect.

From the time the wake rolls up into the initial vortex street until a time of

approximately t = 150, the wake growth is insensitive to Reynolds number. During

this period the three-dimensional structures are growing in strength but have not yet

become the dynamically dominant features in the wakes. After a time of t = 150, the

growth begins to show some sensitivity to Reynolds number. The three-dimensional

structures in the lowest Reynolds number wake, _,o:_119(60)0,, , are quickly diffused by

viscosity and and therefore never become strong enough to overwhelm the two-dim-

ensional dynamics of the early flow. At higher Reynolds numbers, however, coherent

three-dimensional structures dominate the late time growth. Thought there is some

variation in the late time widths of the wakes as the Reynolds number is varied,

the late time growth rate for all of the higher Reynolds number flows is similar. In

fact the growth rates of the highest Reynolds number flows are somewhat lower than

the growth rate for the _o_ _o_346(60)o_ wake. The reason for this is that the 346(60)0_x

wake develops very strong three-dimensional structures that remain coherent for long

periods. Those organized structures can efficiently work to spread the wake. At higher

Reynolds numbers the coherent structures are disrupted, though not destroyed, by

disorganized fine scale motions. The resulting reduced organization of the coherent

structures slightly reduces the wake growth rate.
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4.5 Comparison with Experiment

The xox xox119(60)oxx and 346(60)0_ wakes in figures 4.26 and 4.27 has slight undulations

in the late time growth curve visible in plots of both width measures. This starts

at a time of approximately 80 with the peak which corresponds to the rollup and

saturation of the K£rm£n mode, and is followed by a period of neutral or negative

growth, followed by growth again. This cycle of stronger growth followed by weaker

growth continues as both wakes develop.

Corke, Krull, & Ghassemi [14] (hereafter referred to as CKG) studied this phe-

nomenon in a Re = 119 spatially developing wake produced by a symmetric airfoil

at zero angle of attack. They forced their wake with a two-dimensional disturbance

at the fundamental frequency and a pair of oblique modes at the subharmonic in a

manner similar to the computations presented here. They concluded that the fluc-

tuations in the growth of the wake were due to a parametric resonance between the

fundamental mode and the oblique subharmonic mode. The two-dimensional mode

saturates and begins to feed energy into the three-dimensional oblique disturbance
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through a secondary instability mechanism. The oblique mode in turn saturates, and

the two-dimensional disturbance begins to grow again.

119(60)0_Figure 4.28 shows a comparison between the direct wake width for the _o_

wake and data from figure 4 in CKG. The computed flow has been renormalized to

match momentum thickness and shifted to put the virtual origin for the computed flow

at x = 0. The coordinates were transformed using x/OcKa = Uo(t-to)/Ocomp,,tatio,_ and

(b/O)cKa = (b/O)comp_,,atio,_. This rescaling does not account for differences in initial

forcing magnitude between the experiment and the computation, or for the virtual

origin of the experimental wake. Nevertheless, the match between the computed flow

and the experimental data is quite reasonable.

4.6 Selected Spectra, Mean Profiles,

and Turbulence Statistics

Figure 4.29 shows rescaled streamwise energy spectra (k_/3E(kl)) for the velocity

fields in two of the computed wakes. The data has been plotted in this way in order

to bring out regions of k_ s/a spectra which are expected in turbulent flows. In these

coordinates, regions of k_ 5/a spectra will appear as horizontal lines. The spanwise

and cross-stream (E(k2) and E(ka)) spectra are very similar to the streamwise spectra

and are not shown here.

Figure 4.29a shows the rescaled streamwise energy spectrum for the moderate

Reynolds number _0_-. 346(60)0_ wake which appears in figure 4.13b. There is clearly

no significant inertial (k[ 5/3, horizontal line in the plot) range in this flow. This is

consistent with the fact that the flow is dominated by large coherent structures and

has few small scales. This wake can not be considered turbulent.

Figure 4.29b shows the streamwise energy spectrum for the highest Reynolds

number wake computed, _0_2768(60)0,,. This is the wake which appears in figure 4.13b.

This flow has a spectrum which is much more consistent with the expected spectrum

of a turbulent flow. It shows a range in the spectrum that is close to the expected k_ 5/a

law (horizontal line). Since the range of kl over which the spectrum goes like k_ s/a is
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fairly short, the wake can not be considered fully turbulent. A proper classification

for this wake is "transitional".

This "transitional" classification is borne out by the mean streamwise (ul) velocity

profiles which appear in figure 4.30. (The symmetry of the initial conditions is such

that the spanwise and cross-stream velocities have zero mean). These profiles corre-

spond to the wakes which appear in figure 4.13. Only for the lowest Reynolds number

case (1 xo_19(60)0x_ in figure 4.30a) where no significant three-dimensionality develops,

is the mean profile Gaussian. For all of the higher Reynolds number wakes (figures

4.30b-e) the coherent structures in the flow distort the shape of the mean profiles.

Specifically, the "lumps" in the profiles that appear in the vicinity of x_ = +5.0 are a

result of the strong streamwise structures that appear in figures 4.13b-e. The shape of

2768(60)ox_ wake (figure 4.30e), which is significantly non-Gaussianthe profile for the _0_

again indicates that that flow is not fully turbulent, but instead is still transitional.

Figure 4.31 shows the second order velocity correlations, u_u_ versus the cross-

stream coordinate x2 corresponding to the mean profiles in figure 4.30. Again, because

of the svmmetry of the initial conditions, ' ' and ' '. ulu 3 u2u 3 are zero, so the5' are not

shown. These profiles are typical of plane wakes, with the most intense unsteady

motions occurring away from the wake centerline. As expected, the intensity of the

unsteady motions increases with increasing Reynolds number. Once again the effects

of the coherent structures are on the profiles in the vicinity of z2 = +5.0. This is

particularly apparent in the u'2u'2 profiles for the wakes in figures 4.31c-e. This implies

that the coherent structures shown in figure 4.13 are still responsible for significant

unsteadiness in the wakes.

In a physical flow, the effects of coherent structures on long time averages are

smeared out. This is due to the presence of low amplitude long wavelength motions

that cause each set of coherent structures to be offset in space slightly from the other

sets. Since the longest wavelength available in any of the simulations presented is

not very large, the effective averaging domain is not large, and the effects of coherent

structures on the averages are more pronounced than would be seen in a physical

experiment, figures 4.32 and 4.33 are an attempt to get around this shortcoming.

This has been done by taking mean data from several times near the time of interest
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(approximately t 5: 0.1t in this case) for each simulation. The separate mean data

sets are normalized using the integral halfwidth at each time, hi(C), and forming a

combined mean. This effectively increases the sample size, and introduces the sort of

jitter in the coherent motions that one would expect in a physical flow.

The long time mean streamwise velocity profiles in figure 4.32 are considerably

smoother than the single time mean profiles for the same datasets in figure 4.30.

The profiles are significantly more Gaussian in appearance, though the effects of the

coherent three-dimensional structures are still evident near the edges of the wakes.

The same smoothing effect can be seen in the long time second order correlations

in figure 4.33. The general shapes remain unchanged from the single time plots in

figure 4.31, but the bimodal form of the uxul;' u2u_;' and uaua' ' correlations are more

clearly evident, particularly for the higher Reynolds number cases.

Figure 4.34 shows single time mean streamwise velocity profiles for the same set of

simulations shown in figure 4.30 but at a later time of approximately t = 200 for each

wake. Again the single time means for all of the higher Reynolds number wakes sim-

ulated are quite non-Gaussian due to the strong coherent streamwise structures that

appear in the flow. Taking a long time average (figure 4.36) makes the mean velocity

profiles appear more Gaussian, but the highest Reynolds number wakes continue to

have distinctly non-Gaussian mean profiles.

Figure 4.35 shows the single time second order velocity correlations for the same set

of wake simulations, again at a time of approximately t = 200 for each wake. Figure

4.37 shows the corresponding long time correlations. The most significant thing to

note is that the Re = 119 wake (figure 4.35a) has significantly weaker unsteady

motions than the wakes at Reynolds numbers. This is due to the fact that at that

low Reynolds number, the wake never develops strong fine scale motions.

The effect of fine scale motions is also apparent in the relative magnitudes of the

second order velocity auto-correlations for the higher Reynolds number wakes. At

the earlier time of t ,-_ 100 shown in figures 4.31 and 4.33 the u_u2' ' correlation was

approximately twice the magnitude of the ' ' ' 'ulu I and tt3tt 3 correlations. At t ,-_ 200,

the onset of significant small scale motions have caused these three quantities to be

both much larger in magnitude relative to the mean flow (note difference in scales in
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figures 4.33 and 4.37) and much closer in magnitude to each other. This is due to

the fact that at the earlier time, most of the velocity fluctuations are due to large

scale coherent structures, which favor the u2u2_ _ correlation. At the later time more of

the velocity fluctuations are due to the more randomly distributed fine scales, which

contribute equally to all three second order auto-correlations.



Chapter 5

Three-dimensional

Topological Description

In order to study the fine scale (high wavenumber), high gradient motions in the

computed wakes, a topological classification method has been applied. The method

is based on concisely summarizing the local flow structures in the space of the in-

variants of the velocity gradient, strain rate, and rotation rate tensors. This allows

information about the local flow geometry for every point in the incompressible flow

to be presented in the form of two-dimensional joint probability density functions

(pdfs) of various combinations of the invariants. These pdf plots facilitate the study

of global tends in the local structure of the fine scales in the velocity field.

Only a small subset of the invariant space plots for the wakes that have been

simulated will be presented here. See appendix E for a more complete set of plots.

5.1 Topological Method

An abbreviated description of the topological method used will be presented in this

section. An extended description can be found in appendix D.

The velocity gradient tensor

Aj_ - uj,k (5.1)

153
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can be split into a symmetric and an antisymmetric part

Ajk = S:k + t_J)k (5.2)

where the symmetric part
1

Sjk - _(u:,k + uk0) (5.3)

is the rate-of-strain tensor, and the anti-symmetric part

1
(5.4)

is tile rate-of-rotation tensor.

equation

The eigenvalues ), of Ajk satisfy the characteristic

A3 + PA 2 + QA + R = 0 (5.5)

where P, Q, and R are referred to as the invariants of the tensor Ajk and are given

by

P = --Akk = --Skk

1

Q = _(p2 _ AjkAkj)

1

=  (p2 _

R = -det[Ajk]

1

= __(_pa + 3PQ- A:kAkIAo)

1

= 5(_p3 + 3PQ - SjkSkIS 0 - 314"jklt'k_5;0).

(5.6)

(.5.7

(5.8

The values of the three invariants P, Q, and R completely determine the eigenval-

ues. and therefore the eigenvectors, of the velocity gradient tensor A:k. Since the

eigenvectors of .4j_ determine the local flow kinematics, the local flow geometry is

determined to within an arbitrary rotation by the location of the three invariants in

(P. Q, R) space. See Chong. Perry, and Cantwell [12] for a detailed discussion of the

local flow geometries associated with the various regions of (P, Q. R) space.
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0

Q

Figure 5.1: Invariant Space for Incompressible Flows

For incompressible flow

P = 0 (5.9)

and the second and third invariants reduce to

O = --_(Sj_&j + _)k_4%) (5.10)

1

R = --_(S_k&_Stj + 314)_ l+'ktStj). (5.11 )

Hence the local flow geometry is completely determined by the location of the second

and third invariants of the velocity gradient tensor in (Q, R) space.

The curve in (Q, R) space that separates characteristic equations with all real

solutions (strain dominated local flow) from those with one real and two complex
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solutions (rotation dominated local fow) is given by

27R _ + 4Q a = o. (5.12)

This curve, along with the Q axis, separates the (Q, R) space into four regions as

shown in figure 5.1:

• Above the separator and to the left of the Q axis, the local flow spirals in

towards the local origin in a plane and then flow out along the third direction.

This local flow geometry is referred to as a stable-vortex/stretching.

• Above the separator and to the right of the Q axis, the local flow is toward the

local origin along one axis and spirals out in a plane. This local flow geometry

is referred to as an unstable-vortex/contracting.

• Below the separator and to the left of the _) axis, the local flow approaches

the origin along two axes and flows outward along the third. This local flow

geometry is referred to as a stable-node/saddle/saddle.

• Below the separator and to the right of the Q axis. the local flow approaches

the origin along one axis and flows outward along the other two. This local flow

geometry is referred to as an unstable-node/saddle/saddle.

The flow geometry for a single data point can be determined simply by calculating

the invariants and determining where the)" lie in (Q, R) space. Global trends for large

quantities of data can be examined by calculating the invariants for each point in the

data set and constructing joint probability density functions (pdf's) in (Q, R) space

for the entire data set. Moreover, motions with high gradients will tend to lie far

from the origin in (Q,R) space, so the most intense motions will tend to separate

themselves visually when viewed in the space of invariants.

Other quantities related to the invariants of the velocity gradients tensor are also

of interest. The second invariant. Q, may be written as the sum of quantities

= O, + (5.13)
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where
1

Qs = --_ SjkSj_ (5.14)

is the negative-definite second invariant of the rate-of-strain tensor and

1I,t_k_t,"3k (5.1,5)

is the positive-definite second invariant of the rate-of-rotation tensor.

The second invariant of the rate-of-strain tensor is directly proportional to the

mechanical dissipation rate

= 2,._qjkSkj = -4L, Q_. (.5.16)

Points with a large negative value for Q, have large dissipation. The second invariant

of the rate-of-rotation tensor is equal to the enstrophy density

_j;j = Q_,. (5.]7)

Points with large positive values of Q_. have high associated enstrophy density. Thus,

the second invariant of the velocity-gradient tensor can be thought of as a measure of

tile relative importance of strain and rotation. Plots of -Q, vs. Q_ reveal correlations

between strain and rotation fields. Plots of Q, vs. Rs, the third invariant of the rate-

of-strain tensor
1

R, = -SS, kSx._&_ (.5.1s)

reveal trends in the type of rate-of-strain field associated with high dissipation re-

gions. Since the rate-of-strain tensor is symmetric it only has real eigenvalues, hence

its second and third invariant will always fall underneath the separator, and the pos-

sible rate-of-strain topologies will be limited to either stable-node/saddle/saddle or

unst able-node/saddle/saddle.
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Finally, the vortex stretching rate, 6% may be expressed in terms of the invariants

of the velocity-gradient and rate-of-strain tensors

/rrr = I4 akl, t ktS_; = R, - R.

Plots of the enstrophy density versus stretching, Q_. vs. a can be examined to reveal

global trends.

5.2 Effect of Initial Conditions

Figure 5.2 shows plots of the joint pdf of Q and R for a set of Re6 = 346 wakes with

a variety of combinations of initial disturbance wavelengths. The first feature that is

apparent is that. as one would expect from the discussion of the wakes in physical

space presented earlier, the wake initiated with only a two-dimensional fundamental

and a three-dimensional fundamental 0xx(346(60)0xx in figure 5.2a) has fine scale motions

which have much lower gradients (are much weaker) than the other wakes (recall that

high gradient motions tend to appear far from the origin in invariant space). Further.

though the wake which has an additional two-dimensional subharmonic disturbance

Oxx346(60)0m. in figure 5.2e) has gradients that are on par with the wakes that have

a three-dimensional subharmonic disturbance (figures 5.2b-d), those high gradients

account for a much smaller percentage of the flow as evidenced by the relative small

area inside the second contour level. Note that the contour levels shown are logarith-

mic. with each contour level being ten times the value of the previous level, thus large

differences in the area inside of a given contour level equate to very large differences

in the relative volume of the fluid in physical space represented.

The second feature that is readily apparent is that the overall shape of the joint pdf

of Q and R is the same for all of the wakes, with high gradients motions favoring the

upper left (stable-vortex/stretching) and lower right (unstable-node/saddle/saddle)

regions of (Q, R) space. This same "skewed teardrop" shape has been observed by

Sofia et al. [42] and Chen et al. [11] in studies of the gradients in compressible and

incompressible temporally evolving mixing layers, Blackburn, Mansour. & Cantwell
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[3] in a computation of a turbulent channel fow, and Sondergaard et al. [41] in

a survey of computations of compressible and incompressible shear flows including

mixing layers, wakes, and isotropic and sheared homogeneous turbulence.

It is apparent from the wide variety of flow fields which exhibit this feature that

it is a characteristic of solutions to the Navier-Stokes equations (the pdf of Q and

R generated from random gradient fields do not exhibit this feature). Cantwell [6]

performed an analysis of the evolution of the velocity gradient tensor in incompressible

flows and found that, given certain assumptions, the second and third invariants were

restricted to an attractor in invariant space with a shape similar to the one which has

been observed.

Figure 5.3 shows plots of the joint probability density functions of the second

and third invariants of tile rate-of-strain tensor (Qs and R,) for the same wakes

shown in figure 5.2. Once again, the much weaker gradients in the two-dimensional

0x:rfundamental / three-dimensional oblique fundamental case (346(60)0x_ in figure 5.3a)

are apparent And again, the 0_• 346(60)00_ wake (figure 5.3e) shows gradients on par

with the simulations which have a three-dimensional subharmonic, but with a much

smaller volume of high gradient motions occurring.

All of the pdf's have the same general shape, with highly dissipating motions

(large negative Q,) showing a strong preference for the unstable-node/saddle/saddle

type topology. This strong preference continues even for more moderately dissipating

regions as demonstrated by figure 5.4, which is a magnified version of figure 5.3b.

These moderately dissipating motions account for the majority of the total dissipation

in the flow. Again. these same trends were observed by Chen et al., Soria et al..

Blackburn et al.. and Sondergaard et al. in a wide range of other flows.

Figure 5.5 shows plots of the joint pdf of -Qs (dissipation) and Q_. (enstrophy

density) for the same set of simulations shown in figures 5.2 and 5.3. Once again the

much lower gradients for the three-dimensional fundamental cases (figures 5.5a and

5.5e) is apparent. These wakes also have a pdf shape which which is different than

those for the wakes with a three-dimensional subharmonic (figures 5.5b-d). The "L'"

shaped pdf in figures 5.5a and 5.5e, which tends to hug the axes, is common in non-

turbulent flows and flows in which the turbulent motions have not had time to fully
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0.0 Rs

-0.0025 0.0025

Figure 5.4: Enlarged plot of pdf of Q, vs. R, for _-o:_346(60)o;_. * = 204.8. Corresponds

to figure 5.ab.

develop. The highest mechanical dissipation rates in such flows tend to occur in the

high strain-rate regions between large organized vortical structures, thus the shape of

the pdf. The half ellipsoid shape seen in figures 5.5b-d is much more typical of strongly

three-dimensional flows, where regions of high strain-rate are closely intermingled with

regions of high vorticitv.

The "tongues" of highly rotational points that appear in the flows with a three-

dimensional subharmonic, particularly in figures 5.5b and 5.5c, correspond to the

centers of the strong streamwise structures seen in physical space (since those struc-

tures contain the highest enstrophy density motions in the wake). It is clear from

figure 5.5 that while the most dissipating motions (largest ]Q,I) tend to be associated

with the regions of highest enstrophy density, (scattered points near -Q, = Q_. line.

most obvious in figures 5.5a.b and e), the bulk of the high enstrophy density points in
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-Qw 0 . 2

o
°

_'I Rs-R

-0 •025 0.0 0 .025

Figure 5.6: Contour plots of joint pdf of Q_. vs. Re - R for 346( 60_;°°p000.t = 197.0.

the wake have onh" moderate dissipation rates. This leads to the conclusion that the

bulk of the most mechanically dissipating motions in the wake occur in the vicinity

of the highest enstrophy density motions, but are in fact associated with more mod-

erale enstrophy density levels. This is not entirely unexpected, since many models of

the structure of turbulent motions produce peak dissipation rates separated from the

peak enstrophy density location (c.f. Burger's vortex).

Figure 5.6 shows the joint pdf of Q,,, (enstrophy density) and Re - R (vortex

stretching rate) for the 346(60 _°° wake. The points with the highest enstrophv/ ooo

density occur in regions of the flow that have the strongest vortex stretching. This

comes as no surprise since the effect of stretching is to amplify the vorticity aligned

wilh the strain field. This result is typical of all the three-dimensional flows which

have been studied.
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5.3 Effect of Reynolds Number

Figure 5.7 illustrates the effect of Reynolds number on the invariant pdf's. Shown is

the joint pdf of Q and R for _ _0x(.)(60)0_x wakes all at approximately the same develop-

mental time. The effects of increasing the Reynolds number is to greatly increase both

the magnitude of the highest gradients and the fraction of the flow which contains

high gradient motions.

Changing the Reynolds number has minimal effect on the overall shape of the

pdf's (given that the Reynolds number is high enough to allow for strong three-dim-

ensional motions). The only effect of increasing the Reynolds number is to make the

highest gradient regions appear a bit more scattered (compare figure 5.7d and figure

5.2b on page 159).

5.4 Time Evolution in Invariant Space

Figure 5.8 illustrates the time evolution of the wake flows in invariant space. Shown

is the joint pdf of Q, and R, for the _-o_-346(60)0_, wake. The initial shape of the pdf

is determined by the initial conditions of the flow (figure 5.8a), but it rapidly relaxes

to the general shape which has been observed in the other flows, and which will be

maintained throughout the remainder of the evolution (figure 5.8b).

The strong gradient motions, which are associated with strong three-dimension-

alitv, become much more significant (note the much larger area encompassed by the

second and third contour levels in figure 5.8c as compared to figure 5.8b). The

magnitude of the highest gradient motions then begin drop as the wake approaches a

self similar regime where all the gradients should decay like t -1/2. At the time shown

these wakes have not yet entered the self similar decay regime.

This developmental cycle is common to all of the invariants for all of the three-

dimensional wakes simulated, and is independent of Reynolds number.
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5.5 Rate-of-Strain Distribution and

Vorticity-Strain Alignment

Figures 5.9 and 5.10 show plots of the probability density functions of the normal-

ized principal rates-of-strain, ....a, 3. and % for the 346(60)0_x_°x and 1384(60)0_,_:_°_wakes

respectively. The strain rates are sorted such that the), are in descending order

o _>a _> (5.0_o)

and the rate-of-strain in each principal strain direction has been normalized by the

magnitude of the intermediate rate-of-strain, 13l. Thus the normalized intermediate

rate-of-strain. '3, can take on values of positive or negative one only

= +1.0. (5.21)

This is the reason for the delta function distribution for 3.

There is a direct correspondence between the sign of 3 and the local rate-of-strain

topology. If 3 = +1.0. then the local rate-of-strain topology is of the type unstable-

node/saddle/saddle. If 3 = -1.0. then the local rate-of-strain topology is of the type

stable-node/saddle/saddle.

If the pdf's are formed using all of the grid points in the computational domain

(including those in the freestream), they appear as in figures 5.9a and 5.10a. Approx-

imately two-thirds of the points have a rate-of-strain field consisting of two positive

and one negative rate-of-strain (3 = 1.0). The other two rates-of-strain have broad

distributions with peaks around a _ 2.0 and "7_ -3.0.

If the pdf's are conditioned so as to include only those points with high mechanical

dissipation, which is proportional to -Q,, then the)' appear as in figures 5.9b and

5.10b. The high dissipation points have rate-of-strain fields which almost exclusively

consist of two positive and one negative rate-of-strain (8 = 1.0, unstable-node/saddle/

saddle rate-of-strain topology as was apparent from figure 5.35). The distributions of

o and :, still have rather broad distributions, but with more distinct peaks at o _ 1.5
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and ? m -2.5 This result is insensitive to Reynolds number, and holds for all of the

three-dimensional wakes computed, even those with relative weak three-dimensional

molions (e.g. 0_x346(60)0x_).

Ashurst et al. [2] studied a direct numerical simulation of isotropic turbulence

and found that the strain-rates for the most dissipating motions were in the ratio of

a : _ : _ = 3 : 1 : -4, which they speculated might be a universal ratio. The studies of

Soria et al. [42] and Chen et al. [11] and Sondergaard et al. [41] found that the ratio

of principal rates-of-strain depended on the specific flow examined. The strain-rate

ratio of c_ :_ : _ _ 1.5 : 1 : -2.5 found here for the three-dimensional incompressible

plane wake adds weight to the conc]usion that the ratio is indeed flow-dependent

Figures 5.JJ and 5.J2 show plots of the probability density function of cosine of

the angle between the vorticity vector and each of the three principal strain-rate

directions for the 346( _0_ _ _0x60)0_ and 13_4(60)0_ wakes. The pdf of the cosine is plotted

because in those coordinates randomly distributed three-dimensional vorticitv vectors

will result in uniform pdf's.

There is a clear tendency for the vorticity vector to be aligned (cosine equals

one) with the intermediate rate-of-strain (3) direction and nonaligned (cosine equals

zero) with the most compressive rate-of-strain (7) direction in both wakes (figures

5.11a and 5.12a). When only the points with the highest dissipation rates, and hence

the most intense local rate-of-strain fields, are included in the pdf, this tendency is

strongly enhanced (figures 5.11b and 5.12b). The vorticity aligns almost exclusively

with the intermediate rate-of-strain direction and is nearly always approximately

perpendicular to the most compressive rate-of-strain direction.

Again, similar results were observed by Ashurst et al. [2] for isotropic turbulence.

They also found that the vorticity tended to align with the intermediate rate-of-strain

direction. The studies of Sofia et al. [42] and Chen et al. [11], Sondergaard et al.

[41]. Blackburn et al. [3] and Tsinober et al. [47] found the same tendency for a

wide variety of other flows. The evidence that this is a universal characteristic of

turbulence is becoming very convincing.



Chapter 6

Conclusions

6.1 Numerical Method

The numerical method developed to perform the simulations used for this study has

proven to be both effective and efficient. For planar flows with compact vorticity

fields, matching of the velocities at the edge of a finite sized computational domain

to irrotational flow solutions is a workable alternative to nonlinear mapping of the

infinite direction to a finite domain.

The velocity matching method provides uniform resolution of the vortical region of

the flow without wasting large fractions of the available grid points on the freestream

or over-resolution of the centerplane of the flow. Use of a Fourier method on the

uniform grid also allows for changes in resolution to be accomplished by simply trun-

cating the transformed data or padding it with zeros at runtime. No special routine

or extra computational time is needed to rebuild the grid or dataset after a resolution

change.

The addition of a growing grid in the cross-stream direction allows the computa-

tional domain to adapt to the changing size of the vorticity field as the simulation

evoh'es. This permits the flow to remain resolved even over long simulation times

with minimal need for intervention on the part of the user. Changes in grid size of a

factor of two or more while the simulated wake grew in extent by factors of five were

routine when running the simulations for this study.
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6.2 The Incompressible Plane Wake

6.2.1 Physical Development

The results presented here indicate that oblique disturbances at the subharmonic

wavelength are very important to the development of strong three-dimensionality

in the temporally evolving incompressible plane wake. Simulations started with a

two-dimensional fundamental disturbance and a three-dimensional disturbance at the

subharmonic wavelength developed strong streamwise structures stretching between

corrugated spanwise rollers on the same side of the wake. These structures create

very high rates-of-strain which lead to the appearance of fine scale motions and rapid

growth rates in the far wake. Simulations started with three dimensional disturbances

at only the fundamental wavelength remain almost two-dimensional, with relatively

weak rate-of-strain fields, no significant small scale motions, and sluggish late time

growth patterns which nearly match the corresponding purely two-dimensional wakes.

Varying the Reynolds number affects the intensity and scale of the structures

in the flow. This effect is especially strong in wakes which develop strong coherent

three-dimensional structures (wakes initiated with an oblique subharmonic). At high

Reynolds number these wakes develop very intense fine scale motions even at moderate

Reynolds numbers. The most intense fine scales tend to appear in the vicinity of the

coherent three-dimensional structures. Wakes which do not develop strong three-dim-

ensional coherent structures (wakes initiated with an oblique fundamental) develop

small scales only at the very highest Reynolds numbers. The Reynolds number of

the wake has minimal impact on the growth rate of the far wake. Wakes with very

low Reynolds number do not develop strong three-dimensional structures, and grow

somewhat more slowly at late times. Wakes with moderate to high Reynolds numbers

grow at similar rates given similar initial conditions.

The addition of longer wavelength disturbances allows for scale changes in the flow

and can temporarily augment the growth rate of the wake. This has implications for

the interpretation of temporal simulations, where the flow is restricted to a maximum

wavelength corresponding to the longest wavelength in the initial disturbance field.
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At late times in the simulation the flow will not follow a growth path which can be

related to that of a spatially developing wake.

This result also has implications for experiments involving spatially developing

wakes. Any experiment is by necessity limited by the dimensions of the facility

in which it is performed. The sensitivity of the wake to subharmonic disturbances

which has been observed in these computations suggests that the rate of growth of

experimentally studied wakes may be sensitive to the low frequency spectral content

of naturally occurring disturbances in experimental facilities.

6.2.2 Topological Development

Topological analvsis of the line scale, high gradient motions in the incompressible

wakes revealed that the wakes with a three-dimensional subharmonic have a greater

quantity of more intense high gradient motions as compared to wakes with a three-

dimensional fundamental only. Changes in the phase of the initial disturbances were

found to have minimal impact on the overall distribution of the high gradient motions.

Increasing the wake Reynolds number increased the intensity of the gradients while

preserving the shape of the pdf's in invariant space.

All of the three-dimensional wakes simulated had joint probability density func-

tions which were similar to those observed in other three-dimensional flows:

Joint pdf's of the second and third invariants of the velocity gradient tensor have

a characteristic "skewed teardrop" shape, with high gradient motions tending

to be of stable-vortex/stretching and unstable-node/saddle/saddle topological

types.

Joint pdgs of the second and third invariants of the rate-of-strain tensor indicate

that the most dissipative motions are associated exclusively with an unstable-

node/saddle/saddle type strain topology. More moderately dissipating motions.

which account for the majority of the dissipation in the flow, are also very

strongly associated with an unstable-node/saddle/saddle type strain topology.
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• Joint pdf's of the enstrophy density and vortex stretching indicate that the

highly rotational motions occur in regions where the vortex stretching is posi-

tive, even at late times when the intensity of all gradients are decreasing in the

wake.

Examination of the rate-of-strain distributions and the vorticity-strain alignment

indicates that highly dissipating motions have a strong tendency to have two positive

and one negative principal rates-of-strain (which corresponds to an unstable-node/

saddle/saddle type rate-of-strain topology) in the ratio of 1.5 : ] : -2.5. These

motions also tend to have the vorticity vector aligned with the intermediate (positive)

strain rate direction and nearly perpendicular to the most compressive (negative)

strain rate direction. These results appear to be insensitive to both Reynolds number

and initial condition.

6.3

As a

Future Work

direct extension of this stud)', the following work is recommended:

The effect of the angle of the oblique disturbance needs to be examined, at least

to the extent of verifying the broad range of amplified secondary instabilities

predicted bv the work of Flemming [16].

With the recent availability of larger and faster parallel machines, the existing

code should be used to simulate wakes at higher Reynolds numbers and for

longer times. This is necessary to veri_' that the profound difference between

wakes with short wavelength oblique disturbances and wakes with long wave-

length oblique disturbances continue to exist at very high Reynolds numbers

and at late times.

To adequately simulate late time behavior, the wake simulations need to be

run with the addition of longer wavelength disturbances to allow for continued

unconfined growth. This should also allow for much realistic calculation of late

time mean profiles and turbulence statistics.
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In addition, the code which was developed for this study can readily be used to

study a wide variety of planar free shear flows, including mixing layers (as demon-

strated in section 2.8.1), skewed mixing layers, and momentumless wakes. Applica-

tion of the code to these flows requires only that the proper initial conditions for the

vorticity field and free stream flow velocities be defined.



Appendix A

Classical Similarity Theory

This appendix will present a brief review of the arguments and conclusions of sim-

ilarity theory as applied to free shear flows in general and the incompressible plane

wake in particular.

A.1 Preliminaries

A.1.1 Energy Transport Equation

The Navier-Stokes equations for incompressible flow may be written as

uj,j = 0

where Sjk is the rate-of-strain tensor defined by

1

Sj_ = -_(uj,k + uk,j).

(A.1)

-0 (A.2)

(A.3)
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Multiplying equation A.2 by uk gives

- 2Ps;k + 2u (Sj_ (&_ + Wk_) + &l ($31+ la3_)) = 0
P

where I.l'3k is the rate-of-rotation tensor defined by,

(A.4)

1

It)k = _ (_j,k - uk,_). (A.5)

Taking the trace of equation A.4 and noting S,, = 0 for incompressible flow gives

the transport equation for the kinetic energy E - ukuk/2

( p )E.t + Euk + -uk - 2uujS3k +_=0 (A.6)
P ,k

where _ is the dissipation of (total) kinetic energy

= 2uSjk&j > O. (A.7)

The flow variables may be split into mean and fluctuating parts

uj =3: +u' 3 p=p+p' (A.S)

where the overbar signifies an appropriate average of the variable (temporal or en-

semble for spatially developing flows, spatial or ensemble for temporally developing

flows) and the primed quantities are deviations from that mean.

Using this decomposition, and applying the averaging procedure to the Navier-

Stokes equations A.2 yields the Reynolds equations

- ' 0 (A.9)t/3, 3 -----l/3o



APPENDLX .4. CLASSICAL SIMILARITY THEORY 189

(5_,_ + %-_k + P-,Sj_ - 2v-$jk + u}u'k = 0
P ,k

with a mean kinetic energy defined by

(A.IO)

=
= _+q2 (A.11)

where E is the energy of the mean flow and q2 is the turbulent kinetic energy.

A transport equation for the energy of the mean flow may be derived from equation

A.10 by multiplying by gj and rearranging

_Tt + gkE + P-ffk 2u-ffjS_k + giujuk + -uS3kbk.7 uju k Ssk 0 (A.12)
P ,k

Similarly. a transport equation for the total mean energy can be derived from

equation A.6.

E'.t + q-'Tt + (_Tgk

-- !

+ q-TG + P-_k - 2_"GSjk + %u')u'k + q%'_ + P'u'
p p k

- 2u_'_ + 2uS_Sk; + 2u_'kS' _ = O.
J_ J,k _3 )

(A.13)

Subtracting out the equation for the mean flow energy, equation A.12, from the

above equation yields an equation for the transport of mean turbulent kinetic energy

where

q--_,t+ |q--ffgk + q2u_ + P'ul -- 2uu'3q t ]["_ I] _ (A.14)"jk =
\]P _ ,k

! !

I1 = -u;u k Sjk

is known as the turbulence production, and

(A.15)

_, = 2_Sj_Gj (A.16)
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is the dissipation of turbulent kinetic energy,. The production, I1 serves to transfer

kinetic energy' from the mean flow to the unsteady flow, while the dissipation serves

to convert turbulent kinetic energy' into heat.

It has been observed in a number of flows with simple geometries that at suffi-

ciently high Reynolds number the production scales locally with the dissipation

II ,-_ _. (A.17)

or

- u';u'k Sjk " 2uSjkS'k.7 (A.18)

A complete theoretical understanding of this relationship between production and

dissipation is still lacking. The evidence for equation A.18 is empirical and confined

to a limited range of flows. However this is used as the basis for arguments presented

in the following sections.

A.2 Scales of Motion

Equation A.18 allows for an estimate of the relative size of the large and small scales

in the flow. Assume that the velocity fluctuations and the mean velocity both scale

with the same reference velocity

! I

uj _ uj _ b_ (A.19)

and that the largest scales in tile flow scale with some reference length 6. This allows

an estimate of the scale of the left hand side of equation A.18

n = sj, ~ (A.20)

The scaling of the right hand side is more problematic, since it involves the mean

of products of the gradient of the fluctuations. Clearly the appropriate velocity scale

!

to use is _'0 since uj ,-- ['0, but the appropriate length scale to use is unclear.
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There are two turbulence length scales, or microscales, that are commonly used to

complete the above scaling: The Taylor microscale, and the Kolmogorov microscale.

A.2.1 The Taylor Microscale

The Taylor microscale, A, is defined such that the proportionality given in equation

A.18 is satisfied

giving

u0
-- --_ u-- (A.21)

A2

_" _n 1/2"
/I%

(A.22)

This microscale represents an upper bound on on the range of scales that contribute

to significant turbulent kinetic energy dissipation.

In this stud)', two version of the Taylor microscale were calculated for use in

estimating the resolution of the simulations that were performed. The first version is

one that appears in man)' experimental studies where obtaining the three-dimensional

velocity and velocity gradient field is very difficult. It relies on the measurement of

only one velocity (usually ul)

AT1 _--- (UI,ltLI,1)
(A.23)

The second version used here includes the velocities and gradients in all three

directions
! I

u3uj

A T -_ (tl3,ktlj,k) (A.24)

which is derived from the definition which appears above for the general case.

The Taylor microscale also arises in correlation functions which appear in the

theory of isotropic turbulence. For a complete description see the discussions in

Hinze [1S].
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A.2.2 The Kolmogorov Microscale

The second scale is a result of introducing both a new turbulence length scale and a

new turbulence velocity scale so as satisfy the proportionality in equation A.18

U0 y 2
-- ,-_ v--. (A.25)

r/2

To close the definition, the Reynolds number of the resulting scale is chosen to be one

r]L'
- 1. (A.26)

/y

These lead to the relations

and

t/~ 1n 3/4

v 1
B

U0 n 1/4"
/le 6

(A.27)

(A.28)

The Kolmogorov microscale represents a lower bound on the on the range of scales

that contribute to significant turbulent kinetic energy dissipation. For both the Tavlor

and Kolmogorov microscales it should be kept in mind that they are only estimates

of the actual turbulent length scales.

A.3 Evolution of the Spatially Evolving

Incompressible Plane Wake

A.3.1 Momentum Balance

Figure A.1 shows schematically the wake behind a symmetric body with a drag force

per unit span of D.

For a sufficiently large control volume (the dotted box in figure A.1), only the

downstream edge of the control volume and the drag on the body contribute to

the momentum balance in the control volume. The upstream boundary and top
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x2 = H/2

D

x'e = -H/2 .....................................................

Figure A.I" Schematic of spatially evolving wake. Control volume for momentum

balance.

and botIom of the control volume are at free stream conditions, and therefore have

negligible contribution to the momentum. Thus, for sufficiently large H, an integral

momentum balance over the control volume becomes

H/2

P
-/4/2

[-_(x2)(_7_(x2)- u_) + ( _(x_)- p_ )p

,,,(x2) - ,,1_
P

dx2 (A.29)

where r,j is the stress tensor.

In the far wake.

7.l I -- ttoc
<<1.

lZoc

Combining this with the similarity assumptions

(a.30)

,70
(A.31)

and

(A.32)
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z2 = H/2

bG

D

Figure A.2: Schematic of spatially evolving wake. Control volume for energy balance.

where _ is a measure of the mean flow width and U0 = u_.- ucc is a reference velocity.

allows the momentum balance to be written as

pu
-H/2& -H/2_

In the far wake. the second integral is much smaller than the first, and the momentum

balance can be approximated as

H/2_

pu_
-S-SI2_

Under the assumption of self-similarity (the profile is a function of :r2/_5 only), the

integral is a constant, in this case of order one. Thus, in the far wake

D
u0_ -,. k

pu_
(A.35)
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A.3.2 Mean Kinetic Energy

The evolution of the mean kinetic energy can be derived from the integral of equation

A.1"<2-over the infinitesimal control volume shown in figure A.2

( - )- - ' " 2uSjk'Skj]dV

v ' v P ,k

V

(A.36)

Assuming the flow is stationary, the first integral is zero (constant total energy in

the control volume). The second integral may be converted into a contour integral,

giving

P
fl

v

(A.37)

where ft is the contour surface and flk is a surface normal.

Let 'A_ = _'_ - u--7and Ap = po_. - P. Evaluating over the volume in A.2 and

assuming the mean flow is in the xa direction yields

- s-s/_ v 2 ] ,1
i1

-Hi2

V

(A.38)
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Introducing the similarity assumptions

G
(A.39)

(A.40)

(A.41)

uSu'kS"k _h(-_) (A.42)ca

yields

3'i )
-H/2_ -HI26

H/2_ H/26

+(_'o3,g).1 J ._(_!)d(_-) =-L_ j h(--_)d(_ -_) (1.43,

-H/2_ _ -H/26

The first term on the left is zero since, by equation A.35, Uo5 is constant. The third

term dies off much more rapidly in the far wake than either of the remaining terms.

so it may be dropped. This leaves the approximate relation

H/2_ tt/2_

- H/2? - H/26

The integrals are constants of order one, hence

/_'o_ ([_6) , '-- Uoa. (A.45)
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Combining this with equation A.35 gives

(A.46)

and

Xl 1/2 (A.47)

the asymptotic growth laws for the spatially evolving incompressible plane wake.

A.4 Evolution of the Temporally Evolving

Incompressible Plane Wake

A.4.1 Momentum Balance

For the temporally evolving plane wake the total momentum deficit per unit plan

area M (momentum per unit span per unit length) is a constant. Thus

M /
P

-n/2

(u_-_l(x2))dx2. (A.48)

Applying the similarib" assumption from equation A.31 yields

H/26

P
-H/2¢

(A.49)

Again. the integral is a constant of order one, thus

M

P
(A.50)
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A.4.2 Mean Kinetic Energy

The development of the results for the mean kinetic energy are identical to those for

the spatially evolving wake except that the time derivative of the mean energy is not

dropped. The equivalent to equation A.38 is

(A.51)

Applying the similarity assumptions from equations A.39 through A.42 gives

"'"(?)(?) "[
-HI26 -HI26

H/2_

-H/_

HI2S

-_-_0-o_),j
-H/2S

HI2<< H/2_

-HI2_ -HI2_

"9(A.o.)

The first term is zero since H is a constant. The same holds for the second term

since, by equation A.50, ('06 is a constant. All of the terms which are differentiated

with respect to xl are zero since in a temporal wake there is no spatial variation of
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the mean. This leaves the third term on the left and the term on the right

/°_(_)'(_)=-_0_I _(_)'(_)
-H/26 -H/2_

Again. the integrals are constants of order one, hence

2

Combining this with the result from equation A.50 yields

/'43I \ 1/2; t 1/2
k P /

(A.53)

(A.54)

(A.55)

and

(A.56)

the asymptotic growth laws for the temporally evolving incompressible plane wake.



Appendix B

Linear Stability Theory

In the interest of completeness, this appendix will present a brief overview of linear

stability theory. A brief outline of the methodology used in the present study to

generate the disturbance eigenfunctions will also be presented.

B.1 Mean Flow

The mean base wake flow for all of the present simulation runs was the parallel

Gaussian profile (properly non-dimensionalized)

z-ll = 1 - ,-%U_oe -c'_ (B.1)

_ = _a = 0 (B.2)

p = const (B.3)

where X.uc_0 is the dimensionless centerline velocity deficit, and cl is a scaling factor.

The scaling factor cl was chosen to be 0.69315 and Au¢0 was chosen to be 0.692

which gives an initial wake halfwidth b0 of 1.0, and an initial Reynolds number based

on halfwidth of 0.692/v. These values were used in the previous experiments of Sato

& l'(uriki [39]. Corke. Krull. & Ghassemi [14], and in the computations of Chen.

Cantwell. &" Mansour [10].
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B.2 Linearized Disturbance Equations

Starting with the full incompressible, uniform density Navier-Stokes equations

u:o = 0 (B.4)

uj,t + uku:,k + p'J- = uuj,kk (B.5)
P

P,kk = puk,tul,k (B.6)

a total flow consisting of the mean base flow defined in equations B.1 through B.3

plus a small perturbation

uj = fq_l._ + u_ (B.7)

p= p + p' (B.S)

is substituted into equations B.4 through B.6.

' = 0 (B.9)uj,j

/_l,t_13 qL //_,t + (_1(_1 k .-{- t/_)(/_l,k(_lj Jr" /'/_,k) Jr-

P,.,-t-
P'J' - v(fil,kkS,j + U;,kk) (B.10)

P

(B.11)= ' )(_1,j61_+ 'P.kk + P',kk p(fil,k_l¢ + Uj,k Uk,j)

The mean flow satisfies the Navier-Stokes equations, hence the mean flow terms

may be subtracted out from equations B.9 through B.11 leaving the nonlinear distur-

bance equations
!

uj,j = 0

!

, _ , ,- , , P,j ,
Uj, t -{- ?11122,1 "Jg U2t/1,2_l J + tlk?.lj, k "4- -- = l]'llj,kk

P

I - ! I I
P,kk = p(2ulau23 + uk,tu_,k)

(B.12)

(B.13)

(B.14)
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The perturbations are assumed to be small and products of perturbation terms are

dropped, giving the linearized disturbance equations

' =0 (B.15)uj,j

!

' ' ' (B.16)Uj, t -l- _ll/j, 1 "Jr I/k'Ul,k_lj "-l- p'j-- z Vtl3,kk

P

' ' (B.17)P,kk = 2pftl,2U2,a

The disturbance flow is assumed to have the form of a traveling wave

u; = fij(x2)e i('_=_+z=3-a) (B.18)

p' = iS(x2)e i(_=_+_3-c') (B.19)

where o and/3 are real wavenumbers which determine the wavelength and wave angle,

and c = ca + ici is a complex wavespeed.

Substituting into the linearized disturbance equations

iofil + fi2,2 + ii3fia = 0 (B.20)

io

p
(B.21)

1
i(ofi_ - c)fi_ = --15,_ + u(fi_,_2 - (o 2 + '32)fi2) (B.22)

P

i3
15+ u(fi3,2_ - (o s + 32)fiz) (B.23)

P

15,2_- (a s +/32)15 = 2iapfq,2fi2 (B.24)

i(ai_l - c)_3 = ---

Equations B.20 through B.23 may be combined to eliminate the pressure. After

some manipulations, equations B.20 through B.23 can be reduced to the equations

(B.25)
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and

Here the differentiation operator D -- 0,2 has been introduced for the sake of clarity.

Any physically meaningful disturbance must decay to zero as Ix_l ---* oo, thus the

appropriate boundary conditions for these equations are

[fi_, Dfi2] --* 0 as Ix2] _ oc (B.27)

and

_'3 -- _Ul _ 0 aS Ix=l--, _ (8.28)

Equation B.25 is the well known Orr-Sommerfeld equation. Equation B.26 is

known as the Squire equation. The form of equations B.25 and B.26 indicate that

there are are two classes of solutions to the set of linear equations B.20 through

B.23 ([8]). The first class is comprised of solutions to equations B.25 and B.27 with

equations B.26 and B.28 used only to solve for fia and fi3 once fi2 is known. The

second class is comprised of solutions with fi_ = 0 which satisfy equations B.26 and

B.2S. The solutions we will seek here are in the first class.

B.3 Solution of the Linear Equations

The technique used to solve equation B.25 subject to B.27 was the spectral method

developed by Spalart et al. A brief overview of the procedure will be given here.

The reader is directed to Spalart, Moser, and Rogers [44] for a complete detailed

description.

Spalart et al. begin by defining a vorticity perturbation component perpendicular

to the wave vector (o, _3)

&l = -/3_a + a_3 (B.29)

where

_1 _ Dfi3 - i/3fi2 (B.30)
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and

J.'3 = iafi2 - Dfq (8.31)

are the perturbation vorticities.

Applying continuity (equation B.20) allows &.L to be written in terms of fi2 only

_ +_ = [_-/o _+_/]_ (B.32)

Substituting equation B.32 into equation 8.25 gives

[_(._-/o_+_t) -,/o0.- _/]_+ _ : -o/_0./_ (B.33)

with boundary conditions

,_-__ o _sIx_l_ _. (B.34)

Equations B.33 and B.34, along with B.32, are solved using a standard Galerkin

method. The known and unknown functions, f(z2), are expanded in terms of a set of

orthogonal basis functions R: derived from the (1,1) Jacobi polynomials on a mapped

coordinate r/

&±(rl) = a.inj(rl) (B.35)

fi2(r/) = bN_aFg_,(rl) + bNFN(r/) + bjRj(rl) (B.36)

_2,(q)= cjRj(rl) (8.37)

Rj(_) = (l - rI2)P_"I)(r/) (B.38)

r/-- tanh (x_--_:) (B.39)

where x ° is a scaling factor for the mapping and Fj are exponential "extra" functions

determined from

[D 2 -(a _ + 132)] F: = R: (B.40)

which come about from the inversion of the Poisson equation B.32.
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Derivatives of the basis functions Rj(r/) can be expressed in terms of the basis

functions themselves using the recursion relation

j+l

DRj - xO(2 j + 3) ((j + 1)Rj_1 -(j +3)nj+l)

=- LjkRk (B.41)

Substituting equations B.35, B.36, and B.41 into equation B.32 allows the unknown

coefficients aj to be written explicitly in terms of of the unknown coefficients bi

aj
-i

+

- Mjkbk

+f_+263+2,

dj__bj_2 + (x°)2b_,

j = 1,...N-2;

j = N-l, N;

(8.42)

where d3, e j, and f_ are known rational functions of the expansion index j.

Substituting the above into equation B.33 and applying a scalar Galerkin method

with test function Rk results in an N x N matrix eigenvalue problem for the coefficients

aj of the form

Ejkak = caj (B.43)

where E:k is a complicated matrix (which will not be presented explicitly here) formed

from Ljk (the derivative recursion matrix), Mjk (which relates the unknown coeffi-

cients aj to of the unknown coefficients bj), the known expansion for ill, and the

known parameters o and _.

This eigenvalue problem is solved using a standard numerical package which re-

turns the N complex eigenvalues, c, and their corresponding eigenvectors. The most

unstable eigenfunction for the given input parameters (ul, a, and/3) is the one corre-

sponding to the eigenvalue with the largest complex component ci. That eigenfunction

is normalized and used to form the needed disturbance function.



Appendix C

Aliasing and Alias Control

This appendix presents an overview of numerical aliasing and the techniques used in

this study to control the associated errors.

C.1 Discrete Fourier Transforms and Aliasing

The one-dimensional discrete Fourier transform (DFT) of a series a, of length N is

given by
1 N-]

fin = -_ _ aje -2'_i_ (C.1)
j=0

with inverse transform
N-I

aj = Z a'_e2"'N (C.2)
n=O

Consider a series aj which represents a complex sinusoid with integer wavenumber

k and constant amplitude C

aj = Ce 2ri_. (C.3)

The DFT of this series is

C ___1 e_2,_,_____ = C,5((k - n) mod N)
a_ = _--: j=0

(C.4)
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where 6 is the discrete delta function

1, if j=0
6(j)-- (c.5)

0, otherwise.

Hence a wave with wavenumber k in physical space is transformed into Fourier space

with a wavenumber (k - n) mod N. For example, if k = N + L, the series is trans-

formed as if it were a series with a wavenumber of n = L = k - N. This effect can

been seen directly in physical space since for any integer M

a, = Ce2"i = Ce (C.6)

Thus data separated by M periods N in physical space are the same. Wavenumbers

k + MN are said to be "aliased" to wavenumber k.

Aliasing errors occur in practice when operations on data with wavenumber span

N increases the wavenumber span to greater than N. Such is the case with the

non-linear terms in the Navier-Stokes equations, which are bi-linear products of the

dependent variables. The remainder of this discussion will be limited to such products.

To examine aliasing in bi-linear terms, consider the one dimensional product of

two series of length N

cj = ajbj

N-1 N-1

n----O m----O

N-1 N-1

: Z Z anoint'"" N .

n=0 m=O

(c.7)

This product has an unaliased wavenumber span of 2N - 1, nearly twice the span of

a 3 and bj. The length N DFT of c i is

N-1 N-1

ck = _ _ h,_bm_((n + m - k) mod N).
n=O m=O

(c.s)

Hence modes with (n + m) :> N are aliased to modes with k = (n + m) - .hr.
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The standard numerical DFT algorithms in use today have a span N which is

even (typically a power of 2 with optionally one or more factors of 3) and span a
N

wavenumber space of (1 - _) < k < 7" Products of such series span a wavenum-

ber range of (2 - N) < k < N. Figure C.1 illustrates aliasing with such a modal

arrangement.

_ltiplication

I-NI2 0

'1 ''''''''1'''nem-N n m n+m

_.. Allasinu .--

Figure C.I: Example of alia.sing

In order to properly handle products of length N series, length N alias free prod-

ucts must be formed. The alias error from such products can be eliminated in one of

two ways, by truncation and by phase shifting. These methods are outlined below.

C.2 Dealiasing using Truncation

Since the product of two series each with a wavenumber span of N results in a series

with a wavenumber span of (2N - 1) a simple method of obtaining a alias free product

is to use transforms of length 2N. The length N transforms hj and b3 are padded

with zeros to form length 2N transforms and transformed to physical space to form

length 2N series. The series are used to form the needed products and transformed

back to wave space with a length 2N transform. An alias free length N transform

can then be extracted by discarding modes beyond the desired span in wavespace.

For the case of a wavenumber space (1 - N) _< k _< N identical results can be
3

obtained using transforms of length gN rather than 2N, with resulting savings of time

and storage space. This can been understood by considering that the worst cases for

N
aliasing are when two modes of wavenumber 5- are combined, giving a product which

is aliased to (N- _A)3_ _ _'_ and when two modes of wavenumber (1 - 7N) are
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combined, giving a product which is aliased to (3IN_ N - 2) = (-_ - 2), both of

which are outside of the desired alias free wavenumber space of (1 - _-) < k < N

In practice, the maximum transform length N is determined by the limitations

imposed by the available computer hardware, so the alias free wavenumber space

carried is in practice 1- aN- _< k _< N. Since two thirds of the available transform length

N can be made alias free using truncation, this method of dealiasing is commonly

referred to as the 2/3 rule.

C.3 Dealiasing using Phase Shifts

Equation C.8 can be rewritten in the form

n+m=j n+m=j:t:N

alias free alias error

If the transforms are performed on a shifted mesh (which manifests in wavespace as a

multiplication of each Fourier mode aj by a phase factor eijA) and then shifted back

to the original mesh the results are

_j

n+rn----j n+m=j'l'N

alias free alias error

(C.10)

The unaliased part of the product is unaffected by the phase shift while the alias

error part is multiplied by a phase factor e :t:iNA. This can be used to exactly eliminate

the aliasing error by evaluating fij on two meshes shifted by half a cell width from

each other. Then

e+iNA2 = e:tziN(,Xl 4-_ ) = _ e-l-iN,Xl (C. 11 )

and the alias free product is simply the average of the two evaluations of _:.
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If exact dealiasing is not essential, as is the case for most time accurate simulations,

multiple evaluations at each time substep can be avoided by evaluating the bi-linear

products on a shifted grid at at each time substep. By choosing a random phase shift

e +igA at every other time substep, and using the half-cell offset shift e +ig(z_:t=_) for

the subsequent time substep aliasing error is eliminated to the same order as the time

advance algorithm. This random shift method is used in the present code to control

one-dimensional aliasing errors.

C.4 Multidimensional Dealiasing

Multi-dimensional Fourier transforms are obtained by applying separate one dimen-

sional transforms in each direction

1 M-I N-1 Q-1 . _ kn

6m,,q... - MNQ.. • y:_ y:_ y:_ '''ak_, ...e-2"( M +_+_+...)
j=O k=O 1=0

(c.12)

The transform in each direction is independent of the other directions, hence aliasing

in each direction may be treated independently.

For the three-dimensional DFT, each pair of modes in a bi-linear product can

combine to form one of four types of terms: an unaliased term, a term aliased in one

direction, a term aliased in two of the three directions, or a term aliased in all three

directions. Hence

4_={j,k,t} =

+

ali_s free

E+ {=LM,0,0 } g+ {0, + N,o } g+ {0,0,:e q }

aliased in one direction only

k+{_M,iN,O} k+{+M,O,,.l-Q} k-t- {O,i N.4- Q }

aliased in two of three directions
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+ (c.13)
_+{±M,iN,±Q}

aliased in a11 three directions

Dealiasing in multiple dimensions can be accomplished in the same ways as in

one dimension, with truncation, shifting, or a combination of the two. Using only

truncation is inconvenient since it reduces the number of useful modes to less than one

third of the available modes. Dealiasing by pure phase shifting is also inconvenient

since it would require two evaluations for each direction dealiased, for a total of six

evaluations per time substep.

The present code uses a combination of the two methods. Following Patterson

and Orszag [31], modes with

(M/2 -_- (k)2 + (Q)2 > 2 (_) 2 (C.14)

are truncated. This eliminates the two and three dimensional aliasing as per the

2/3 rule, leaving only the one dimensional aliasing. Truncating in this way increased

the useful modes to approximately half of the total modes. Rogallo [34] advocates

the somewhat less severe rule of truncating only those modes which are aliased in

more than one direction (as opposed to the ellipsoid in C.14 which also truncates

some modes which are aliased in only one direction) however the increased number

of useful nodes (to approximately two thirds of the total number of nodes) is not

significant when the resulting shape of the useful wavespace is considered.

The remaining one dimensional aliasing errors can be handled using phase shifting

as described above for the one dimensional case. The transform is evaluated twice on

grids shifted by half a cell width in each direction, and the alias free product is the

average of the two evaluations.

Since exact dealiasing is not required for the present code, random phase shifting

in each direction at alternate time substeps as outlined above for the one dimensional

case is used to cancel out the aliasing error to the order of the time advance algorithm.

The remaining aliasing error appears as a small amplitude random forcing function
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at low wavenumbers [34]. So long as the computed flow remains well resolved (hence

the energy in the highest wavenumber motions is several orders of magnitude below

the most energetic wavenumbers) any residual aliasing error will be at least several

orders of magnitude below the energy of the alias free solution.



Appendix D

Topological Classification

Topological methods are useful in the description of vector fields and are coming in-

creasingly into use as a means to study the large data sets produced by numerical

simulations. Chong, Perry, and Cantwell [12] have carried out a general classification

of the various types of linearized three-dimensional flows which can occur in com-

pressible and incompressible flow. This classification method was used by Cantwell,

Chen, and Lewis [7] and Chen, Cantwell and Mansour [9] to analyze the the topology

of flow structures in experimental measurements of a pulsed low-speed diffusion flame

and direct numerical simulations of a compressible plane wake. Chen et. al. [11] and

Soria et. al. [42] used this method to study the small scale motions in numerical

simulations of a variety of compressible and incompressible flows including wakes,

mixing layers, isotropic turbulence, and homogeneous shear flows.

The method is based on concisely summarizing local flow structures in the space

of invariants of the velocity gradient tensor. In these studies, the velocity gradient

tensor, Aij = ui,j is calculated at each point in the flow, and the invariants of the

velocity gradient tensor, as well as the invariants of the rate-of-strain and rate-of-

rotation tensors are calculated. Plots of the joint probability density functions (pdf's)

of the invariants for the entire flow reveal global trends in the geometry of the velocity

field which would be difficult if not impossible to discover using other techniques.

They also allow the study of how structures in invariant space (which correspond to

specific local flow geometries) correspond to structures observed in physical space.

213
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There are several good reasons for studying the velocity gradient tensor as op-

posed to the raw velocity field. Primary among them is that results are coordinate

independent (invariant under any affine transformation) and independent of the frame

of reference of the observer. Moreover, in the case of incompressible flow where the

first invariant is zero, the three dimensional physical field, which can be infinite in

extent, can be represented in a finite region of the two dimensional space of the second

and third invariants. Finally, large scale motions are associated with relatively low

gradients while small scale motions are associated with high gradients. Thus different

length scales in the physical flow naturally tend to be sorted into different regions in

invariant space, and thus may be examined separately.

While the present study focuses on the velocity field, it should be noted that this

method may also be applied to any smooth vector field of interest. These can include

the vorticity field, the scalar gradient field, or the pressure gradient field.

D.1 Local Flow Trajectories

The instantaneous trajectory of any fluid particle in a flow field is determined by the

solution of the convection equation

x,,t = uj (D.1)

where x 3 is the location of the given fluid particle and uj is the flow velocity evaluated

at the particle position.

For fluid in the neighborhood of some reference fluid particle at location x_ moving

with the local flow velocity u_, equation D.1 may be used to obtain an equation for

the local relative flow.

c

x j,t -- x.7,t

= (xk - + (xk- + ...

(D.2)
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Hence, in a frame of reference moving with some particle in the flow, x_ = xj - x_, the

trajectories of fluid particles near the reference particle with respect to the reference

particle are determined by the solutions to the linear equation

' ' (D.3)Xj, t _ Uj,kXk .

The flow in this local frame of reference is completely determined by the eigen-

vectors of the velocity gradient tensor

Ajk = uj.k (D.4)

the symmetric part of which

1

Sjk -- _(uj,k + uk,j) (D.5)

is the rate-of-strain tensor, and the anti-symmetric part of which

1

W ik = _(uj,k - uk,j) (D.6)

is the rate-of-rotation tensor. If Ajk has only real eigenvalues, the local flow is strain

dominated and the local flow consists of fluid moving inward to or outward from the

origin along distinct axes.. If Ajk has a pair of complex eigenvalues, the local flow is

rotation dominated and the local flow consists of fluid spiraling around the origin in

one plane and flowing inward or outward along the third direction.

D.2 Eigenvalues

The eigenvalues, _, and complex eigenvectors, ej, of Ajk satisfy the eigenvalue equa-

tion

[Ajk - ,_jk]ej = 0 (9.7)
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where the eigenvalues A are solutions to the characteristic equation

det[Ajk - ASjk] = 0. (D.8)

Equation D.8 expands to the third order algebraic equation

A3 + PA _ + QA + R = 0 (D.9)

where P, Q, and R are referred to as the invariants of the tensor Ajk and are given

by

P = --Akk = --Skk (D.10)

Q = _(p2 _ A:kAkj)

(p2 S:kSkj W:kI4 k_) (D.11)
2

R = -det[A/k]

= _(_p3 + 3PQ- A:kAklAo)

= _(_p3 + 3PQ - S:kSklSl_ -- 3W:kWktS_j). (D.12)

The set of solutions for A from equation D.9 fall into one of three categories: All

three A are real and distinct; All three A are real and at least two of them equal; Or

one A is real and the other two are complex conjugates. The category which a given

set of A falls into is completely determined by the location of the three invariants in

(P, Q, R) space.

The surface in (P, Q, R) space that separates characteristic equations with all real

solutions from those with one real and two complex solutions (and hence the surface

on which the characteristic equation has three real solution with at least two equal)

is given bv

27R: + (4P 3 - 18PQ)R + (4Q 3 - p2Q2) = 0 (D.13)
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A detailed discussion of the properties of this surface and a guide to the solutions

for the resulting sets of ej (and hence the local flow geometry) that can occur in the

various domains in (P, Q, R) space is given in Chong, Perry, and Cantwell [12].

D.3 Incompressible Flows

For incompressible flows,

P = Aj_ = 0 (D.14)

and equations D.11 and D.12 simplify to

1

Q - 2(SJkSkj +

R = - (SjkSk Szj+ 3Vbkg k Szj).

(D.15)

(D.16)

The surface which divides real from imaginary solutions described by equation D.13

simplifies to the curve

27R 2 + 4Q a = 0. (D.17)

Hence, for incompressible flows, the local flow geometry is completely determined by

the location of the Q and R invariants in (Q, R) space.

Figure D.1 shows all of the possible local flow geometries for incompressible flow.

Below the curve given by equation D.17 all three eigenvalues of Ajk are real, and the

flow is dominated by strain type motions. To the left of the R = 0 axis, the local flow

has fluid moving inwards toward the origin along two of the principal directions and

outward from it along the third principal direction (stable node/saddle/saddle). To

the right of the R = 0 axis, the local flow has fluid moving outward from reference

point along two of the principal directions and inward towards the reference point

along the third direction (unstable node/saddle/saddle).

Above the curve given by equation D.17 two of the eigenvalues of Aij are complex,

and the local flow is dominated by rotational motions. To the left of the R = 0 axis,

the local flow has fluid spiraling inwards toward the reference point in a plane and

moving outward from it in the third direction (stable focus/stretching). To the right
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Q

R

R = + 2_/3 3/2- _ (--o)

Figure D.I" Invariant Space for Incompressible Flows
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of the R = 0 axis, the local flow has fluid moving toward reference point in one

direction and spiraling outward in a plane (unstable focus/contracting).

D.4 Joint Pdf's of Invariants

This relatively simple mapping of the location of the Q and R invariants in (Q, R)

space to the local flow geometry allows for a very concise summary of local geometry

of a large numbers of points in a flow field. Q and R are calculated for each point of

interest (often the whole flow) and the resulting data is presented as a joint probability

density function (pdf) in the invariant plane. This allows the local flow geometries to

be studied in a global framework which allows overall trends to be easily distinguished.

This technique is especially useful for studying the smallest scales in the flow, since

small scales will have high gradients and their invariants will tend to lie far from the

origin in (Q, R) space where any trends can easily be distinguished.

D.5 Enstrophy Density, Dissipation,

and Vortex Stretching

Other quantities related to the Q and R invariants are also of interest. In particular,

Q and R maybe be split into contributions from the rate-of-strain and rate-of-rotation

tensors. These contributions can be directly related to physical quantities in the flow.

The second invariant of the velocity gradient tensor can be rewritten as the dif-

ference of two pos-i-tive-def-inite quantities

Q _ 1(S kSjk-- Wj Wjk)
2

= Q,+Q_ (D.18)

where Qs is the second invariant of the rate-of-strain tensor Sjk and Q_ is the second

invariant of the rate-of-rotation tensor Wjk. This decomposition allows the the study

of the relative importance of strain and rotation (enstrophy density) in the local flow

geometry. If Q is large and positive, then the local enstrophy density is large and
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dominates the strain (Q_ >> Q,). If Q is large and negative, then the local strain

is large and dominates the enstrophy density (Q, >> Q_). Plots of joint pdf of Q,

versus Q_ will reveal correlations between strain and rotation in the flow.

The third invariant, R can be similarly split

R
,3

Rs - (I" (D.19)

where R, is the third invariant of the rate-of-strain tensor Sjk and a = WjkW_tS_j

represents stretching of vorticity. Plots of the joint pdf of a = R, - R and the other

invariants will reveal correlations between vortex stretching and other quantities. Of

particular interest is the correlation between vortex stretching and the enstrophy

density (2Q_).

The invariants of the rate-of-strain tensor Sjk are of additional interest. For in-

compressible flow, the rate mechanical dissipation of energy due to viscosity is related

to the second invariant of S3k by

= 2uSjkSkj = -4vQ,. (D.20)

Hence strongly dissipating regions in a flow have large negative values of Q,. Since

Sjk is symmetric, all its eigenvalues must be real, hence its invariants lie under the

real-imaginary dividing curve given by equation D.17. By studying plots of Q, versus

R_ correlations between the mechanical dissipation and the local flow geometry can

be examined.
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Invariant Space Pdf_s for

Selected Datasets

221



APPENDIX E. INVARIANT SPACE PDF'S FOR SELECTED DATASETS 222

o

.. o'

¢9
_C

0
°_

L,,

¢o

_alc?

o
i



APPENDIX E. 223INVARIANT SPACE PDF'S FOR SELECTED DATASETS

o

E)

| °° ,

"L"

c,l

e',

=
0

°_

09

°°

_d



APPENDIX E. INVARIANT SPACE PDF'S FOR SELECTED DATASETS 224

"Z"

119

;>

as

aS .._.
o_

o_

e- ,....
o_

0 ""
°_

;>

o_

;>

°_

O e,

0

_ _d od
¢.u ,...,

¢Xl

o II

o• _

• -- as



APPENDIX E. INVARIANT SPACE PDF'S FOR SELECTED DATASETS 225

o_

0

C)

t'N

0

C)

I

Cxl

0

C:>

I

t'N

0

t I t "_
llJ

c_

r:
C'q

0
°_

r.f)

(q

o_

0



APPENDIX E. INVARIANT SPACE PDF'S FOR SELECTED DATASETS 226

0

O

0

I

fXl

0

o .r:_:". "

C_

I

fN

123

I

I :

c_

0
._

e_

ll9

°_



APPENDIX E. INVARIANT SPACE PDF'S FOR SELECTED DATASETS 227

o
I

c5

,...,
°_

oo

,_

o6

0

e-
°_

0 ,-_

0

L

g ii ii



APPENDIX" E. INWARIANT SPACE PDF'S FOR SELECTED DATASETS 228

t
fXl

0

!

°
,P

°

°%

t,

,_°° ,1

t'N

C)

0

i t I

C_
I 0

0

t_

a_



APPENDIX E. INVARIANT SPACE PDF'S FOR SELECTED DATASETS 229

F 4 I I I I
c',l

C_
0 I

CN

C_
o r

_,..': OI

, ,.,_. ,'-.:.
• ;,i .,¥.,

• .._ ,'- _,_

. " r" "* _.1

• • _" 'oP4.

I t :":'i_2't_f_ °
o

0

o

"d"

e_

©
o_

_4
a_

0_



APPENDIX E INVARIANT SPACE PDF'S FOR SELECTED DATASETS 230

¢-

°_

°_ o

",_ II

..,,io I-_

II od

o

o _-

o _

_.' .=

.__ _ N
r. N -_



APPENDIX E. INVARIANT SPACE PDF'S FOR SELECTED DATASETS 231

{'N

O

I

I

CXl

o

c_
I

o_
I
t_

a:

" r; :.;__

U'3
C)

0

O

0

t.n
o

o
I

I I I I t I "¢_

o
I

o

¢;

L¢3
0

0
I

¢4

c,l

r_
0

o_

m.

19

4_

¢9

o_



APPENDIX E. INVARIANT SPACE PDF'S FOR SELECTED DATASETS 232

o

C_
I

t'N

o

c_
I

I
m o

, . • ",,_"¢_-. _'_.__Jr--_- -' " '£e'_' .'_1 ° v

I
Ill

' . " " ; "" ""'4. !_ "" , I
°_ "2"'_"-4. ",q__" " i .... ° !

c,l
o

o
I

o

o

°

o

o

o
I

_4

0
o --

e_

L_

a_

°_

Z"



APPENDIX E. INVARIANT SPACE PDF'S FOR SELECTED DATASETS 233

I

o
I

o

o

o _.
o

o

o
I

°_

II 06

0

•- II

o _ II

a_;8

0 _

_. ._ .



APPENDIX E. INVARIANT SPACE PDF'S FOR SELECTED DATASETS 234

o3

I t t t I t t I ._
CY

o3

o_

130

o

too

o
I

13o

"t°

I
I

t.
o

I

¢xl

_4

_.1

0
,_

¢o

:d

°_



APPENDIX E. INVARIANT SPACE PDF'S FOR SELECTED DATASETS 235

013

t I t I I
C_

C_

°°

• "1. * "., .1_,

; - "t

• "'.¥,_:.

•.°., °
": : : "°

- •

0

v-4

I

0
I

-

("4

I

CO

0
I

"Z"

E II

o o6
°_

Q9

,,e

$t I..t

o _-
v

;_ "-5 II
¢- .,_

._ ;_ _0

°_ _

0 N "-"
w

_ _ e4

_ _ -

°_ °_ _,_



APPENDIX E. INVARIANT SPACE PDF'S FOR SELECTED DATASETS 236

0

0

ul

n¢

0

0

kD

kD

0

I

0

' I I t I t t

C)

I

I

CY

t_

v--t

I

Cy

_ao

e,

r.
o

o-

7_

L,

I13

(d
a_

o --



AppENDIX E. INVARIANT sPACE PDF'S FOR SELECTED DATASETS

!

237

--. _4

c.O

.E I_

6

o_

°_ o_ _,_



APPENDIX E. INVARIANT SPACE PDF'S FOR SELECTED DATASETS 238

°,.

o

o

I t t t I t I t I I --'
t_ c:_ t23

o C_

if) I o

¢'4

0
°_

r13

g.,

lae
°_



APPENDIX E. INVARIANT SPACE PDF'S FOR SELECTED DATASETS 239

t t I i i I t

o CY
I

I I I I I I
gl

o CY
I

o

&

°_

• ° "*j° •

.," :: °:.::
• _L o,

• • ,° •

o o

o

o

C_

°"

• ° °

.,i° °

• *" I 0,
o o

o

0')

E _

_ °

v _

_ t"-

0 _ _

o_

0 _ "-_

o _ o_
"-_ 0 _

a_ _ H



APPENDIX E. INVARIANT SPACE PDF'S FOR SELECTED DATASETS 240

o

I

o_
I

c)

I
3_

c_
I

o
I

I
o_

I t I I t I I I I *-

o

o

I

o

o

o

o

I

¢,,1

e_

©

t9

_d

°_

[J.



APPENDIX E. INVARIANT SPACE PDF'S FOR SELECTED DATASETS 241

o

t13

I I

c_
I

o

t._

I

c_
I

I I I I

I t I I I . I

fl_ o
I
m r-t

.

., .':. ,:,..
, :.) o._

• ..' .*-'_
... .. ,_ 0

., .. ,....';. :£'-
.*.o

C3

,e.-I
I

°
I
m

• t • °_

o

o

°

r-t

c__

E :¢

o4

0

E
•_

6

¢9

I.,IN

A

D.-
;_ ¢',1

o _ ,._

m

0 0o

0 -,

d6

"_



APPENDIX E. INVARIANT SPACE PDF'S FOR SELECTED DATASETS 242

. .° .

o
t I t t t "' I I .: .'W

oo

o

i
CY

.o

,if">""

o

I t t t t ! i -

&

"2

r--I

0
I

0

o
I

r-t

0
I

bid

©
°m

2..

L,

_2
¢o

o_



AppENDIX E.

INVARIANT SPACE pDF'S FOR sELECTI_D DATASETS a

o

_) ° i ° •

°; °

,-4

O

b \\

e_

¢rG

v_



APPENDIX E. INVARIANT SPACE PDF'S FOR SELECTED DATASETS 244

o

o

e-,

o
I

o

o

e_

0

2-
e_

°_

o

o

o
I

o

o
I



APPENDIX E. INVARIANT SPACE PDF'S FOR SELECTED DATASETS 245

0

0

0

I

0

0

I

t_
t-
O

E 05
°_

._ ¢',1

tl

0 ¢',1

,...., ¢'4

a. ii

0 v
° ,-.-1

°_

._ ©

0 "_

t..,

E
._

5



APPENDIX E. INVARIANT SPACE PDF'S FOR SELECTED DATASETS 246

o
CX

I

I

°.

o°

° o

_° °! o*.

°° .#. S]o:_c'.:_

"..::¢.

00

O

o

&

C',I

e_

0

¢o

._J

°_



APPENDIX E. INVARIANT SPACE PDF'S FOR SELECTED DATASETS 247

I I I t I I I

c_
o I

o

co

o

-.

_d

4

. ;_,11

• .. ',_T._

.' ....'. "_i'_
• -2 °

,._ _'

o o

o

"Z"

J

0
"N

°_ _

_ m
II

I o6

•-_ II

0

0 °_
e-

o E

_ .__
0 m

.2 E
_ °_

°_ ,_

°° _



APPENDIX E IIVVARIANT SPACE PDF'S FOR SELECTED DATASETS 248

cx)

o

I

o

F I i I

c_
I

,o o
o

o

°o o

• . .°

,-4
I

0

J
.o o.°

o
I

I
_ o

o

o
I

"2

ta_

e_

o
o_

i,i

°_



APPENDIX E. INVARIANT SPACE PDF'S FOR SELECTED DATASETS 249

oo

I t I I I I I I I ,-v_.-.----

C_
I

o

I

I

o
o

v.-t

o
I

I_ r--I
I

v-t

o

0

°_

o _ c,,i

II

0 II

e- "---"
• _ °
C

0 _-
©

E

0 m

0 ¢"

.£ E

I1_ e-.

E =
,_

¢) E



APPENDIX E. INVARIANT SPACE PDF'S FOR SELECTED DATASETS 250

o

P4

• :.._<".._Ot
-- .;'r l .a .'°

I1"1

fXl

t'N
I

C",I

_3

r,

e-
0

°_

_J

°_

,,.....



APPENDIX E INVARIANT SPACE PDF'S FOR SELECTED DATASETS 251

°

• .o °.'.• ° :
oe• ° _• • • •

B •
• p .

0
°_

E _4

.,

,._ II

aO

H

qX'-"

0 o,o

a, ii

.-.
0 ..-.-

0 ',.9

"-" 0
©.--, E

m

"" 0

:= E

_9 ,_,

.,,.o.

°_

.-'g

E

°_



APPENDIX E. INVARIANT SPACE PDF'S FOR SELECTED DATASETS 252

¢4
¢xl

¢S
_aO

0

e_
t_

19
19

19
g,.



APPENDIX E. INVARIANT SPACE PDF'S FOR SELECTED DATASETS 253

UI

o

o

o

• oi ,..: .

c'_
I

o

I

ffl

o
0_

E _4
• _ _

6 ,-

I.,I I.,1

_3

0 _

•"_ II

°_

0 °_

_ 0

o

_._ 0
o "N

_ o_

°° _



APPENDIX E. INVARIANT SPACE PDF'S FOR SELECTED DATASETS 254

t'

o

o
r-t

o

o
r-4

o

¢;
r..t

I I I I I

0
J

I t + + I I
ul

c_
I

3
fi_

• ., J

• -, .:$,¥
...._ _

1 r E

o o

o

o

o

&

o

o

e_

©

_b



APPENDIX E. INVARIANT SPACE PDF'S FOR SELECTED DATASETS 255

o

o
,-4

&

Io
,-.-4

I t

"-°.,p

°I°, . •

o o

o

_°

o

o
,..4

C_

• . .: ;.,,.%'4
.. z..,0,

.- Ill_

- ..',.

• * J •

•".:'E

m o o

i o
o
,.-i

m

0

E

6 ,-

,d
i.tl_

o0

t9

I-, °

(:Y II

I .4
,_ o6

0 •

0

0 m

0
*_

0 ¢n

•£ E

[" "E

¢s E

E .=



APPENDIX E. INVARIANT SPACE PDF'S FOR SELECTED DATASETS 256

o

I

8
I

o

ff3

o_
I

I I t I I I

!
m

n_

• . ,

• . , :'' _ , ,," °,

'..
"..', t..::_

I

I t I "-

0

O

0

0"3
I

O

0

0

O

t.v3
I

¢",1

e_

¢)

_J

II)

a_



APPENDIX E. INVARIANT SPACE PDF'S FOR SELECTED DATASETS 257

0

113

t I t I I I I t I

7_
CY

I

O

U'3

t I

CY
I

I_ O

I

o _.
O

,.°

O

t_

I

I

m tel

.'; _:. "..-
• _'o • • _-- • e._• ••..,,,. 3-

• 0-...

- ." -_._:_2 I
• . °% •

0'3

O
°_

E _4
n_ o_

NN

OO

LO

I II

Cy o6

o II

e_

o

o o

E

0

0
0

* E

E _

b2



Appendix F

Turbulence Statistics for

Selected Datasets

258



APPENDIX F. TURBULENCE STATISTICS FOR SELECTED DATASETS 259

o-°I

¢_ & & /- ,o

I n tl_atll

°°.°°o , "_

vq _ e_

o
"'7

w_

o

C)
°_
.,,w.)

c;

°0
,......w

°_



APPENDIX F. TURBULENCE STATISTICS FOR SELECTED DATASETS 260

-- c5 _ c5 c5

c
c C

,_[nl'n

-- _ _

c_

c5

C'4

0
°_

o.
,--4

In Lng_w ]n tl_$w



APPENDIx F.

TURBULENCE STATISTIcs FOR SELECTED DATASETs 263

r_

"i

,-_n,rn u_

7

?

! n tream

v_

¢,0

= It
0

II od

c_

0

0 _ e,i

m

_ _ •



APPENDIX F. TURBULENCE STATISTICS FOR SELECTED DATASETS 262

c c

._[nInu_tu

N

.i?,_"

o°- jr

: c

m 0

t--,
0

F.y')

o_

[n u_uJ |n tn_w



APPENDIX F. TURBULENCE STATISTICS FOR SELECTED DATASETS 263

,o-

'"7

:_n!nl_uJ

m o_

"L"

:: "L

"4"'i_ i

c?

,_nfnu_w

"'7

.2
cc

E

a_

A

v .J_

0 -_

C",]

= II

o ._ _.

o E II

J

_., r-

°_

a. _ N
_ E g



APPENDIX F. TURBULENCE STATISTICS FOR SELECTED DATASETS 264

1
_- _ _ _-

,_ln.rn ue_w

I
f

-- C o, oc r--.

v

""--..................... ,':i." "_'"

._[n,{'nu_aw

m c_

¢c

c_
o_

¢.a

c_

°--

r+

[n _ream [n _eam



APPENDIX F. TURBULENCE STATISTICS FOR SELECTED DATASETS 265

o"/ ",_

,........ :: ")

.. :.';:4.-.:......

=°¢ ...

,_nfn u_gw ,_n (rl ol_oJ

_ o _ _J

0

0
"7

._- .=

C_ o, ao

[[I UI_OLU

0

E
°_

N

= il

I=_

L

o @

0

°_



APPENDIX F. TURBULENCE STATISTICS FOR SELECTED DATASETS 266

I

J

o

._i........"""" .... _'"

,_0,rnu_w

-- c5 <5 c_

c_

c_

m

._o

o

c'q

b_
c_

0

4:

b_
°_

[n 0_m In u_w



APPENDIX F. TURBULENCE STATISTICS FOR SELECTED DATASETS 267

.=_

w_

"g"

,|

:j i
. "

.:)

. . _c

In u_uJ

""7

c_

0

o_

OH

II

-

m
19

_:: II

o6

,_

0

e
m

m

m

0

,_

e

;> ..l::

m

b. _s

tae r.



Appendix G

Wakes with an

Oblique Fundamental

As discussed in the introduction, Williamson [52] and Williamson & Prasad [53, 54, 55]

suggested an alternate to the mechanism examined in the bulk of this stud)' for the

development of strong three-dimensional motions in the plane wake. Their experi-

ments indicated that strong, highly oblique coherent structures could be produced by

an interaction between fundamental wavelength disturbances shed at a small oblique

angle from the wake generator (as is common for the wakes behind bluff bodies such

as cylinders) and long wavelength two-dimensional waves which grow due to the hy-

drodynamic instability of the far wake.

|n order to verify that this proposed mechanism is indeed a legitimate path for

the development of three-dimensional structures, a small set of simulations were run

to examine the behavior of such wakes. The simulations were initiated with the

same initial mean profile as used in the earlier simulations (see section 2.7 on page

36). Fundamental disturbances at angles of between 5 ° and 30 ° with respect to

the spanwise direction (0 ° being the non-oblique two-dimensional fundamental used

in the earlier simulations) and two-dimensional (0 °) subharmonic disturbances were

superimposed on the mean. In each case, the width of the computational domain was

chosen such that the fundamental disturbance was periodic ill both the streamwise

and spanwise directions. Note that because the fundamental disturbance is oblique,

268
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there is no relevant measure of phase between the fundamental and the subharmonic.

The phase, as defined for the two-dimensional wakes in chapter 3, effectively varies

from 0 to 2rr along the span of the simulations.

Figures G.1, G.2, and G.3 show oblique views of an iso-enstrophy density contour

for wakes initiated with the oblique fundamental at 5° , 15 ° , and 30 ° respectively. The

Reynolds number of these wakes, Reb = 180, was chosen to approximately match the

experiments of Williamson et al. The times (all approximately t ,_ 100) match the

times for the wakes in figure 4.13 in section 4.3.2 on page 111. The viewing angle is

also the same as for the earlier simulations.

The interaction of the oblique fundamental and the two-dimensional subharmonic

causes the rollers of the (oblique) K_irmdn vortex street which initially forms from

the oblique fundamental disturbance to wrap around one another. This reorients

some of the spanwise vorticity from the Kdrmdn vortex street into the streamwise

direction. At low angles this wrapping is a result of the essentially two-dimensional

interaction of the fundamental and the subharmonic. Each spanwise location sees a

different phase between the fundamental and the subharmonic, thus each spanwise

section pairs in a slightly different way as per the discussion in section 3.3.2. This is

illustrated by the cuts through the vorticity field of the 5 ° wake which are shown in

figure G.4. Eventually the rollers become sufficiently entwined for the three-dimen-

sionality of the flow to become significant. At higher angles, the same basic process

occurs, but the three-dimensionality of the flow begins to effect the dynamics at an

earlier time.

As Williamson et al. suggest, this mechanism is a likely candidate for the cell

pattern seen in the far of the p]ane wake by Cimbala, Nagib, & Roshko [13]. Figure

G.5 is a top view of the 30 ° oblique wake in figure G.3 (the free stream flow is from

left to right). The cell pattern here roughly matches the pattern seen in figure 19 of

Cimbala et al.

The higher the angle of the oblique fundamental, the more quickly the rollers of

the Kirm,_n vortex street become distorted, and the more quickly streamwise vorticity

is produced. Only at the highest angle shown, 30 °, does the wake begin to develop

streamwise structures similar in intensity to the wakes initiated with pairs of oblique
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Figure G.I" Iso-enstrophy density contour for 5° oblique fundamental plus two-dim-

ensional subharmonic. Re_ = 180. t_ol = 0.2. t = 106.6.
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Figure (;.2: Iso-enstrophy density contour for 15 ° oblique fundamental plus two-dim-

ensional subharmonic. Reb = 180. I_l = 0.2. t -- 95.2.
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Figure G.3: lso-enstrophy density' contour for 30 ° oblique fundamental plus two-dim-

ensional subharmonic. Reb = 180. I_t = 0.2. _ = 110.5.
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"i::-:.:.. ...... :....._..

'.i!_::. ...."....."..._.

• ...: ........... :-...'"

Figure G.4" Spanwise vorticity at various spanwise locations for 5 ° oblique funda-

mental plus two-dimensional subharmonic. Reb = 180. t = 106.6. Contours are

0.01 _< 1*'31 -< 0.4 in increments of 0.05.
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Figure G.5: Top view of iso-enstrophy density contour for 30 ° oblique fundamental

plus two-dimensional subharmonic. Reb = 180. Iwl = 0.2. t = 110.5.
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Figure G.6: Iso-enstrophy density contour for 5 ° oblique fundamental plus two-dim-

ensiox_al subharmonic. Reb = 1800. Iw[ = 0.2. t = 99.9.
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Figure G.7: Iso-enstrophy density contour for 30 ° oblique fundamental plus two-dim-

ensional subharmonic. R_ = 1800. I"l = 0.8. t = 101.9.
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subharmonic waves at the same development time (compare the wake in figures G.1,

G.2, and G.3 to the the Reb = 119 wake in figure 4.13a in section 4.3.2 on page 109).

This result is consistent with the stability analysis of Flemming [16], which predicts

strong growth of subharmonic disturbances at angles between approximately 45 ° and

70 °. The 5° oblique fundamental case produces oblique subharmonic disturbances

at angles well below 45 ° , and thus the three-dimensional structures do not grow

in strength. At an oblique shedding angle of 30 ° however, the resulting oblique

subharmonic disturbances are over 45 ° (see figure G.5) and thus grow in strength.

This is very significant to the development of fine scale motions at higher Reynolds

numbers. Figures G.6 and G.7 show iso-enstrophy density contours for the 5° and

30 ° oblique fundamental wakes, respectively, but this time at a Reynolds number of

R_b = 1800. This gives a Reynolds number and development time roughly equivalent

to the wake in figure 4.13d in section 4.3.2 on page 110. At the time shown, the

5 ° wake, which does not produce significant streamwise structures, has developed

no detectable fine scale motions even at this rather high Reynolds number. The

only effect of increasing the Reynolds number has been to slow the diffusion of the

vorticity in the spanwise rollers. In contrast, the 30 ° wake, which does produce strong

coherent streamwise structures, develops strong fine scale motions. This is in line with

the earlier simulations, and reinforces the result that the tertiary transition in the

incompressible plane wake requires the presence of strong long wavelength coherent

streamwise structures. These results indicate that the source and symmetry of those

structures are not significant, so long as they are present.
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Summary of Simulations

Table H.I: Summary of Two-dimensional Simulations

Tag

Filename

._5o(o)z_
mixdiff

35(o)z_
wkdiff

346(0)_

wk2d_l

69(0)_

wk2d_2

Reb

Max Time

Nl x N_ x N3

501

1102.9

8X128×4

35

283.4

8x128x4

346

285.8

128 x 128 x 4

69

504.2

128 x 128 x 4

_100

0.02

0.02

_'010 _001

¢010 ¢001

cIO0

¢I00

C010 cOO1

¢o,o ¢oo,

-- I

I

278
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Table H.I: Summary of Two-dimensional Simulations

(Cont.)

Tag

Filename

119(0)g_

wk2d_3

1384(0)_

wk2d_5

2768(0)_

wk2d_6

346(0)_o_

wk2d_7

346(0)___:

wk2d_9

119(0)_

wk2d_lO

Reb

Max Time

Nl x N2 x N3

119

361.0

128 x 128 x 4

692

337.8

128 x 192

1384

303.9

192 x 256

2768

291.0

192 x 256

x4

x4

x4

346

311.4

192 x 192 x 4

346

251.5

192 x 192 x 4

346

312.4

192 x 192 x 4

119

297.9

128 x 128 x 4

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

EOIO gO01

¢o10 ¢0t31

0.02

0

0.02

z/4

0.02

_-/2

0.02

0

glO0 _010 _001

¢1oo ¢olo ¢oo,

-- b

-- b

-- b



APPENDIX H. SUMMARY OF SIMULATIONS 280

Table H.I: Summary of Two-dimensional Simulations

(Cont.)

Tag

Filename

692(0)o%_

wk2d_l 1

1384(0)_:f

wk2d_12

119(0)__%

wk2d_13

692(0)8__%

wk2d_14

1384(0)8__%

wk2d_15

119(0)_._%

wk2d_16

692(0)8__%

wk2d_17

1384(0)8__%

wk2d_18

Reb

Max Time

N1 xN_ x A½

692

265.7

192 x 192

1384

254.6

192 x 192

119

315.1

128 × 128

692

298.1

192 x 192

1384

305.1

192 x 192

x4

x4

x4

x4

x4

119

340.8

128 x 128 × 4

692

313.5

192 x 192 x 4

1384

313.7

192 × 192 x 4

CIO0

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

COIO COO1

¢010 ¢001

0.02

0

0.02
I

0

0.02

7r/4

0.02

_/4

0.02

_/4

0.02

_/2

0.02

_/2

0.02

_/2

cIO0 _010 cO01

¢1oo ¢olo ¢oo1
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Table H.I: Summary of Two-dimensional Simulations

(Cont.)

Tag

Filename

346(0)o_o=_

wk2d_25

69(0)/:_

wk2d_27

Rcb

_010
Max Time Cloo

010

Nx × N2 × N3

346

248.1

256 × 192 × 4

69

336.1

128 x 128 × 4

0.02

0.02

0.02

0

0.02

0

COO1

001

0.02

0

0.02

0

cIO0

¢1oo

cOIO

¢010

cOO1

¢ooi

Table H.2: Summary of Three-dimensional Simulations

Tag

Filename

O.r,r

346(60)o_.x

wk3d_l

346( 60 )o_7

wk3d_2

346( 60)o_7

wk3d_3

zOx346(60)o,_

wk3d_4

R_b

COIO _¢001
Max Time eloo

¢olo ¢oo1
NI x N_ x Nz

346

340.0

192 x 128

346

303.0

128 x 128

x 64

x 64

346

218.2

96 x 128 x 64

346

478.1

192 x 128x64

0.02 -

0.02 -

0.02 -

0.02 -

cIO0

1 O0

cOIO

_010

EO01

¢001

0.02

0

0.02

,r/2

0.02

0
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Table H.2: Summary of Three-dimensional Simulations

(Cont.)

Tag

Filename

346(60)o_

wk3d_5

x -_x
346(60)o_.

wk3d_6

Reb

¢010
Max Time eloo

010

NI×N2×N3

346

292.1

192 × 192 × 64

346

293.7

0,T.T

346(60)oo_.

wk3d_7

346(60 _°_

wk3d_8

OX:F

346(60)o_.:_

wk3d_9

w

346( 60 )o7o_x

wk3d_lO

346( 60 )o_{;

wk3d_ll

346(60)o_

wk3d_12

192 x 192 x64

346

318.4

192 × 192

346

321.0

192 x 192

x 64

x 64

346

232.0

96 × 128 × 48

346

200.3

96 x 128 × 48

346

321.6

96 x 128 × 48

346

417.0

96 × 128 × 48

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

_001

¢ool

_1o0

¢1oo

EOIO

¢010

E:ool

_OOl

0.02

7r/2

0.02

0

0.02

0

0.02

,r/4

0.02

0

0.02

_/2

0.02

0

0.02

0

0.02

_/4

0.02

r/4

0.02

r/4

0.02

r/2
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Table H.2: Summary of Three-dimensional Simulations

(Cont.)

Tag

Filename

346( 60 )o_o7

wk3d_13

346(60)o_

wk3d_14

346(60)o_X;

wk3d_15

xOx
346(60)oo_

wk3d_16

34 _,,, '-J

wk3d_17

346(60)_°_

wk3d_18

346(60)oo_

wk3d_19

346(60)o_

wk3d_20

Reb

_010
Max Time _1oo

_010

NI×N2xN3

346
0.02

249.8 0.02
0

96 x 128 × 48

346
0.02

272.3 0.02
7r/4

96 × 128 × 48

346
0.02

340.8 0.02
7r/2

96 x 128 x 48

346
0.02

321.1 0.02
0

128 x 128 ×64

346
0.02

282.4 0.02
_/4

128 x 128x64

346
0.02

293.6 0.02
_/2

128 × 128×64

346
0.02

268.7 0.02
0

96 x 128 × 48

346
0.02

329.2 0.02
7r/4

96 x 128 x 48

_0Ol

¢ool

cIO0

¢1oo

0.02

_/2

_01o

_010

0.02

0

0.02

0

0.02

0

0.02

_/4

_0oI

_001
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Table H.2: Summary of Three-dimensional Simulations

(Cont.)

Tag

Filename

_v

z_x
346(60)o _._-

wk3d_21

346(60)005

wk3d_22

x_x
346(60)o_._

wk3d_23

,z",_ z
346(60)o_

wk3d_24

346(60)_o °

wk3d_25

¢')_ ,,,TO.T- 168(60)o_.._

wk3d_26

xOz
69(60)o,._

wk3d_27

1 zO,r384(60)o_

wk3d_28

R_b

_010
Max Time eloo

_010

N1 x N2 x .N3

346
0.02

302.9 0.02
r/2

96 x 128 x 48

346
0.02

288.2 0.02
0

96 x 128 x 48

346
0.02

317.4 0.02
r/4

96 × 128 × 48

346
0.02

210.5 0.02
_r/2

96 x 128 × 48

346
0.02

200.1 0.02
0

256 x 192 x64

2768

328.7

256 x 256 x 192

69

336.1

128 x 128 x32

1384

342.4

192 x 256 x 128

0.02

0.02

0.02

_001

_001

0.02

0

cIO0

¢1oo

cOIO

_010

0.02

_/4

0.02

7r/2

0.02

_/2

0.02

0

0.02

0

0.02

0

0.02

0

C001

001

0.02

0
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Table H.2: Summary of Three-dimensional Simulations

(Cont.)

Tag

Filename

0_

1384(60)o_

wk3d_29

] x0x19(60)o_

wk3d_30

.r _x

119(60)o_

wk3d_31

119(60)o_.

wk3d_32

1 O_x19(60)o_

w]:;_d_33

119(60)?°
wk3d_34

2768(60)o_

wk3d_40

xO.r
692(60)o_

wk3d_41

_olo _oo_ d °° em° e °°_
Max Time eloo

¢olo ¢ool ¢1oo ¢olo ¢ool
N1 x N2 x N3

1384 0.02
100.2 0.02 - -

0
192 x 256 × 128

119

425.6

96 x 128 × 48

119

459.0

96 x 128 x 48

119

478.6

96 × 128 x 48

119

402.7

96 x 128 x 48

119

352.6

192 x 128 x64

2768

319.8

192 x 256 × 128

692

222.2

192 x 192 x 128

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0

0.02

0

0.02

0

0.02

0

0.02

0

0.02

_/2

0.02

0

0.02

0



APPENDIX H. SUMMARY OF SIMULATIONS 286

Table H.2: Summary of Three-dimensional Simulations

(Cont.)

Tag

Filename

692(60)o_

wk3d_42

Reb

COIO
Max Time Eaoo

_010

N1 X N2 x N3

90.0

192 x 192 x 128

0.02

cIO0

100

0.02

_/2

cOO1

001
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